from flavour to susy flavour models
play

From Flavour to SUSY Flavour Models Vinzenz Maurer Universitt Basel - PowerPoint PPT Presentation

From Flavour to SUSY Flavour Models Vinzenz Maurer Universitt Basel 11th July 2011 Valencia, FlaSy 2011 Based on Antusch, Calibbi, V.M. & Spinrath arXiv:1104.3040v1 Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy


  1. From Flavour to SUSY Flavour Models Vinzenz Maurer Universität Basel 11th July 2011 Valencia, FlaSy 2011 Based on Antusch, Calibbi, V.M. & Spinrath arXiv:1104.3040v1 Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 1 / 17

  2. Outline 1 Motivation 2 Defining a SUSY Flavour Model 3 Testing a SUSY Flavour Model 4 Summary Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 2 / 17

  3. Outline 1 Motivation 2 Defining a SUSY Flavour Model 3 Testing a SUSY Flavour Model 4 Summary Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 2 / 17

  4. What we want to describe Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 3 / 17

  5. Outline 1 Motivation 2 Defining a SUSY Flavour Model 3 Testing a SUSY Flavour Model 4 Summary Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 3 / 17

  6. Class of Models: Matter Fields • Symmetries: SU ( 5 ) × G family • Matter fields: F ∼ (¯ 5 , 3 ) T 1 , 2 , 3 ∼ ( 10 , 1 ) N 1 , 2 ∼ ( 1 , 1 ) • SU ( 5 ) → SM F = ( d c , L ) T = ( Q , u c , e c ) Y d ∼ Y T e Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 4 / 17

  7. Class of Models: GUT Symmetry Breaking • Adjoint of SU ( 5 ) : H 24 ∼ ( 24 , 1 ) • Broken into direction 1   3 1   3  1  H 24 ∝ Y =   3   − 1   2 − 1 2 ⇒ Different coupling to F -submultiplets Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 5 / 17

  8. Class of Models: Family Symmetry Breaking • Flavon fields: φ i ∼ ( 1 , 3 ) • G family broken by VEVs in the directions [Antusch, King, Spinrath ’10]         0 1 0 0  , ˜ φ 1 ∼ 1  , φ 2 ∼ 1 φ 2 ∼ i  , φ 3 ∼ 0      − 1 1 w 1 • Yukawa matrices of the form   ↑ ↑ ↑ Y ∼ 1  H 24 � φ 2 � + � ˜ � φ 1 � φ 2 � � φ 3 � (1)  M M ↓ ↓ ↓ Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 6 / 17

  9. Class of Models: Matrix Textures M N diagonal � 0 ⇒ m 1 = 0, ∼ TBM � y 1 − y 1 Y T ν = y 2 y 2 y 2 Y u diagonal  0 − ǫ 1  ǫ 1 Y d = ǫ 2 ǫ 2 + i ˜ ǫ 2 ǫ 2 + w ˜ ǫ 2   ⇒ y τ y b = 3 2 , θ CKM 0 0 ǫ 3 13   0 c 1 ǫ 1 − c 1 ǫ 1 Y T c 2 ǫ 2 + i ˜ c 2 ǫ 2 + w ˜ e = c 2 ǫ 2 c 2 ˜ ǫ 2 c 2 ˜ ǫ 2   0 0 c 3 ǫ 3 with c 1 = c 2 = c 3 = − 3 ˜ 2 , c 2 = 6 [Antusch, Spinrath ’09] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 7 / 17

  10. Kähler Potential and Canonical Normalisation • Kähler potential i T i + φ † M 2 F † F + φ † i φ i i φ i K = F † F + T † M 2 T † i T i • Using hierarchy ǫ 3 ∼ y b ≫ y d , s ∼ ǫ 1 , 2 , ˜ 2 : K FF † ≈ diag ( 1 , 1 , 1 + ζ 2 ) ˜ φ † 3 φ 3 with ζ 2 ∼ M 2 • Non-canonical kinetic terms ⇒ F → diag ( 1 , 1 , 1 − 1 2 ζ 2 ) F [Antusch, King, Malinsky ’07] [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 8 / 17

  11. Class of Models: Matrix Textures in Canonical Basis M N diagonal � 0 ⇒ m 1 = 0, ∼ TBM + ζ 2 � y 1 − y 1 k Y T ν = y 2 y 2 y 2 k Y u diagonal   0 ǫ 1 − ǫ 1 k Y d = ǫ 2 + i ˜ ( ǫ 2 + w ˜ ǫ 2 ) k ǫ 2 ǫ 2   ⇒ y τ y b = 3 2 , θ CKM − ζ 2 0 0 ǫ 3 k 13 Y T e = . . . with k = 1 − 1 2 ζ 2 [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 9 / 17

  12. Class of Models: Matrix Textures in Canonical Basis M N diagonal � 0 ⇒ m 1 = 0, ∼ TBM + ζ 2 � y 1 − y 1 k Y T ν = y 2 y 2 y 2 k Y u diagonal   0 ǫ 1 − ǫ 1 k Y d = ǫ 2 + i ˜ ( ǫ 2 + w ˜ ǫ 2 ) k ǫ 2 ǫ 2   ⇒ y τ y b = 3 2 , θ CKM − ζ 2 0 0 ǫ 3 k 13 Y T e = . . . with k = 1 − 1 2 ζ 2 [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 9 / 17

  13. Class of Models: Matrix Textures in Canonical Basis M N diagonal � 0 ⇒ m 1 = 0, ∼ TBM + ζ 2 � y 1 − y 1 k Y T ν = y 2 y 2 y 2 k Y u diagonal   0 ǫ 1 − ǫ 1 k Y d = ǫ 2 + i ˜ ( ǫ 2 + w ˜ ǫ 2 ) k ǫ 2 ǫ 2   ⇒ y τ y b = 3 2 , θ CKM − ζ 2 0 0 ǫ 3 k 13 Y T e = . . . with k = 1 − 1 2 ζ 2 [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 9 / 17

  14. ✘✘✘✘ ✘ SUSY Mediation and Soft Terms SUSY breaking mediated by supergravity • Typically SUSY breaking by all fields with VEVs F φ = O ( 1 ) m 3 / 2 � φ � • SUGRA & sequestering results in m 2 = m 2 3 / 2 ˜ n ∂ m ˜ ˜ K − F ¯ n F m ∂ ¯ K A = A 0 Y + F m ∂ m Y with n , m running over flavons Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 10 / 17

  15. ✘✘✘✘ ✘ SUSY Mediation and Soft Terms SUSY breaking mediated by supergravity • Typically SUSY breaking by all fields with VEVs F φ = O ( 1 ) m 3 / 2 � φ � • SUGRA & sequestering results in m 2 = m 2 3 / 2 ˜ n ∂ m ˜ ˜ K − F ¯ n F m ∂ ¯ K A = A 0 Y + F m ∂ m Y with n , m running over flavons Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 10 / 17

  16. Class of Models: Soft Terms Small Deviations from CMSSM • Soft masses m 2 F = m 2 x 2 3 ζ 2 ) 0 diag ( 1 , 1 , 1 − ˆ ˜ • Trilinear couplings − x 1 ǫ 1 ( 1 − 1 2 ζ 2 )   0 x 1 ǫ 1 ǫ 2 ) ( 1 − 1 2 ζ 2 ) x 2 ǫ 2 + i ˜ ( x 2 ǫ 2 + ˜ A d = A 0 x 2 ǫ 2 x 2 ˜ ǫ 2 x 2 w ˜   x 3 ǫ 3 ( 1 − 1 2 ζ 2 ) 0 0 ∝ Y d ⇒ not diagonal in SCKM basis ✚ ✚ • Almost CMSSM spectrum • Flavour and CP violation effects dominated by A terms Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 11 / 17

  17. Class of Models: Soft Terms Small Deviations from CMSSM • Soft masses m 2 F = m 2 x 2 3 ζ 2 ) 0 diag ( 1 , 1 , 1 − ˆ ˜ • Trilinear couplings − x 1 ǫ 1 ( 1 − 1 2 ζ 2 )   0 x 1 ǫ 1 ǫ 2 ) ( 1 − 1 2 ζ 2 ) x 2 ǫ 2 + i ˜ ( x 2 ǫ 2 + ˜ A d = A 0 x 2 ǫ 2 x 2 ˜ ǫ 2 x 2 w ˜   x 3 ǫ 3 ( 1 − 1 2 ζ 2 ) 0 0 ∝ Y d ⇒ not diagonal in SCKM basis ✚ ✚ • Almost CMSSM spectrum • Flavour and CP violation effects dominated by A terms Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 11 / 17

  18. Class of Models: Soft Terms Small Deviations from CMSSM • Soft masses m 2 F = m 2 x 2 3 ζ 2 ) 0 diag ( 1 , 1 , 1 − ˆ ˜ • Trilinear couplings − x 1 ǫ 1 ( 1 − 1 2 ζ 2 )   0 x 1 ǫ 1 ǫ 2 ) ( 1 − 1 2 ζ 2 ) x 2 ǫ 2 + i ˜ ( x 2 ǫ 2 + ˜ A d = A 0 x 2 ǫ 2 x 2 ˜ ǫ 2 x 2 w ˜   x 3 ǫ 3 ( 1 − 1 2 ζ 2 ) 0 0 ∝ Y d ⇒ not diagonal in SCKM basis ✚ ✚ • Almost CMSSM spectrum • Flavour and CP violation effects dominated by A terms Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 11 / 17

  19. Class of Models: Soft Terms Small Deviations from CMSSM • Soft masses m 2 F = m 2 x 2 3 ζ 2 ) 0 diag ( 1 , 1 , 1 − ˆ ˜ • Trilinear couplings − x 1 ǫ 1 ( 1 − 1 2 ζ 2 )   0 x 1 ǫ 1 ǫ 2 ) ( 1 − 1 2 ζ 2 ) x 2 ǫ 2 + i ˜ ( x 2 ǫ 2 + ˜ A d = A 0 x 2 ǫ 2 x 2 ˜ ǫ 2 x 2 w ˜   x 3 ǫ 3 ( 1 − 1 2 ζ 2 ) 0 0 ∝ Y d ⇒ not diagonal in SCKM basis ✚ ✚ • Almost CMSSM spectrum • Flavour and CP violation effects dominated by A terms Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 11 / 17

  20. Outline 1 Motivation 2 Defining a SUSY Flavour Model 3 Testing a SUSY Flavour Model 4 Summary Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 11 / 17

  21. SUSY Threshold Corrections and Parameterisation Simple formulae for tan β enhanced corrections to Y d and Y e H u y SM e ,µ,τ ≈ ( 1 + ǫ l tan β ) y MSSM cos β e ,µ,τ ˜ H u y SM d , s ≈ ( 1 + ǫ q tan β ) y MSSM cos β ˜ d , s W ˜ H d y SM ≈ ( 1 + ( ǫ q + ǫ A ) tan β ) y MSSM cos β e c L ˜ L b b H u 1 + ǫ q tan β θ SM 1 + ( ǫ q + ǫ A ) tan β θ MSSM ≈ i 3 i 3 ˜ Q d c ˜ Q ˜ d c G H u θ SM 12 ≈ θ MSSM 12 δ SM CKM ≈ δ MSSM CKM u c ˜ ˜ Q Q H u ˜ ˜ d c H d [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 12 / 17

  22. SUSY Threshold Corrections and Parameterisation Simple formulae for tan β enhanced corrections to Y d and Y e H u y SM e ,µ,τ ≈ ( 1 + ǫ l tan β ) y MSSM cos β e ,µ,τ ˜ H u y SM d , s ≈ ( 1 + ǫ q tan β ) y MSSM cos β ˜ d , s W ˜ H d y SM ≈ ( 1 + ( ǫ q + ǫ A ) tan β ) y MSSM cos β e c L ˜ L b b H u 1 + ǫ q tan β θ SM 1 + ( ǫ q + ǫ A ) tan β θ MSSM ≈ i 3 i 3 ˜ Q d c ˜ Q ˜ d c G H u θ SM 12 ≈ θ MSSM 12 δ SM CKM ≈ δ MSSM CKM u c ˜ ˜ Q Q H u ˜ ˜ d c H d [Antusch, Calibbi, V.M., Spinrath ’11] Vinzenz Maurer (Uni Basel) From Flavour to SUSY Flavour Models FlaSy 11th July ’11 12 / 17

Recommend


More recommend