Taken from: The Progenitor Evolution Of Type Ia Supernovae: The theoretical uncertainties O F T A S N T E R M O T P R H A Y P S I E C D S N R E A G D B E M O J U I D N U Y N T I V S I E R Joke Claeys Collaborators: Onno Pols, Frank Verbunt, Silvia Toonen (Nijmegen), Rob Izzard (Bonn), Jacco Vink (UvA), Nicki Mennekens (VUB), Ashley Ruiter (MPA)
POPCORN Inherent differences between BPS codes? -Input physics? -Numerical treatments?
Binary population synthesis • Fits to single star models from detailed stellar evolution codes • Modified to include effects of binary evolution • Simulate 1 binary < 1 sec, 10 6 binaries in a few hours ⇒ Tool to study populations ⇒ To investigate uncertain physics, its importance and effects on populations
Binary population synthesis • Fits to single star models from detailed stellar evolution codes • Modified to include effects of binary evolution • Simulate 1 binary < 1 sec, 10 6 binaries in a few hours ⇒ Tool to study populations ⇒ To investigate uncertain physics, its importance and effects on populations
2 canonical scenario’s for type Ia supernovae Single Degenerate (SD) Double Degenerate (DD) Whelan & Iben 1973, Nomoto 1982 Webbink 1984, Iben & Tutukov 1984
POPCORN (= Population synthesis of Compact Objects Research Network) Double Degenerate (DD) Single Degenerate (SD) Yungelson Yungelson 1e-12 1e-12 Wang/Han et al. Wang/Han et al. Ruiter et al. Ruiter et al. Mennekens et al. Mennekens et al. Toonen et al. Bours/Toonen Claeys et al. Claeys et al. 1e-13 Maoz et al. 2011 Maoz et al. 2011 • ) 1e-13 • ) SN rate (/yr /M O SN rate (/yr /M O 1e-14 1e-15 1e-14 1e-16 100 1000 10000 100 1000 10000 t (Myr) t (Myr) (N ELEMANS ET AL . 2013)
Four binary population synthesis codes • Binary_c: Izzard et al.(2004,2006,2009), Claeys et al. (subm.) • Brussels code: Vanbeveren et al. (1998), Mennekens et al. (2010) • SeBa: Portegies Zwart et al. (1996), Nelemans et al. (2001) and Toonen et al. (2012) • StarTrack: Belzcynski et al. (2002,2008), Ruiter et al. (2009) Most simple comparison • Equalize the assumptions as far as possible, e.g. • Common envelope evolution • Initial distribution functions • Specifics of stable RLOF Stellar populations • Single WD systems with non-degenerate companion • Double WD systems
Single WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Single WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Single WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Single WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Birthrates (Constant star formation, 100% binaries, M WD > 0 . 48 M ⊙ ) Binary_c Brussels code 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 0.033 yr − 1 0.029 yr − 1 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 1e-02 4 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 1e-03 3 1e-03 0.035 yr − 1 0.034 yr − 1 2 1e-04 2 1e-04 1 1e-05 1 1e-05 0 1e-06 0 1e-06 1 1e-07 1 1e-07 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Double WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Double WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Double WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Double WD systems: log a vs. M WD , 1 Binary _ c Brussels code 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
Birthrates (Constant star formation, 100% binaries, M WD , 1 > 0 . 48 M ⊙ ) binary _ c Brussels code 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 0.009 yr − 1 0.014 yr − 1 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ ) SeBa StarTrack 5 1e-01 5 1e-01 4 4 1e-02 1e-02 log separation ( R ⊙ ) log separation ( R ⊙ ) 3 3 0.011 yr − 1 0.012 yr − 1 1e-03 1e-03 2 2 1 1 1e-04 1e-04 0 0 1e-05 1e-05 1 1 2 1e-06 2 1e-06 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 M wd, 1 ( M ⊙ ) M wd, 1 ( M ⊙ )
• Similarities: • Same evolution paths found at similar regions in mass and separation • Similar birthrates of single and double WD systems • Differences: → Due to variations in the input physics • Initial-final mass relation • Stability of mass transfer • Survival of mass transfer • Helium star evolution Toonen, Claeys, Mennekens, Ruiter 2014, A&A, 562A, 14T
Conclusion • POPCORN: • Same evolution paths found at similar regions in mass and separation • Small differences: due to variations in the input physics
Thank you!
Recommend
More recommend