Improved nuclear physics for supernovae Implications for neutrino spectra, nucleosynthesis and dark matter Ermal Rrapaj University of Washington, Seattle December 16, 2015
Core Collapse Supernovae Progenitor M ≈ 8 - 20 M ⊙ R ≈ 500 -1500 R ⊙ M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?
Core Collapse Supernovae Progenitor M ≈ 8 - 20 M ⊙ R ≈ 500 -1500 R ⊙ The binding energy is carried away by ν, ν M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?
Core Collapse Supernovae Progenitor What about M ≈ 8 - 20 M ⊙ dark matter ? R ≈ 500 -1500 R ⊙ The binding energy is carried away by ν, ν M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?
Detection of SN87A Hirata et al, Phys. Rev. Lett. 58, (1490) 12 events in the burst sample observed in Kamiokande-II, and 8 events in the burst sample observed in the IMB detector
Dark Matter, Why ? Astron.Astrophys. 571 (2014) A16 Energy composition of our universe: Planck Data ◮ Dark Energy: 68 . 3% ◮ Dark Matter (DM): 26 . 8% ◮ Attomic Matter: 4 . 8% ◮ Light: 0 . 005% ◮ Neutrinos: 0 . 0034%
Dark Matter, Why ? Astron.Astrophys. 571 (2014) A16 Energy composition of our universe: Planck Data ◮ Dark Energy: 68 . 3% ◮ Dark Matter (DM): 26 . 8% ◮ Attomic Matter: 4 . 8% ◮ Light: 0 . 005% ◮ Neutrinos: 0 . 0034% So, what is Dark Matter?
Can we ‘see’ dark matter? Essig et al, arxiv:1311.0029 (2013) Portal Particles Operators − ǫ eJ SM “Vector” Dark Photons µ F µν , ∂ µ a f a G µν ˜ a G µν , a f a F µν ˜ f a Ψ γ µ γ 5 Ψ “Axion” PseudoScalars ( µ S + λ S 2 ) H † H “Higgs” Dark Scalars “Neutrino” Sterile Neutrinos y N LHN
Can we ‘see’ dark matter? Essig et al, arxiv:1311.0029 (2013) Portal Particles Operators − ǫ eJ SM “Vector” Dark Photons µ F µν , ∂ µ a f a G µν ˜ a G µν , a f a F µν ˜ f a Ψ γ µ γ 5 Ψ “Axion” PseudoScalars ( µ S + λ S 2 ) H † H “Higgs” Dark Scalars “Neutrino” Sterile Neutrinos y N LHN This talk will be focused on Dark Photons!
Dark Photons: How? Holdom, Phys. Rev. B 166, (1986) 196 High - Energy 1 1 ǫ Y 1 ( B µν ) 2 − ( F ′ µν ) 2 − B µν F ‘ µν + A ′ A ′ 2 + g D J D m 2 µ A ′ µ L ⊃ − D 4 4 2 cos θ W 2 Low - Energy 1 1 µ A ′ µ + µ J EM m 2 � g B V B µ J B m 2 γ B ( V B µ ) 2 � L ⊃ g Q A ′ γ Q A ′ − µ − µ 2 2 Lee, Yang Phys. Rev. 98, 1501 (1955) Batell, deNerville, McKeen, Pospelov, Ritz Phys. Rev. D 90, 115014 (2014)
Dark Photons: Why? γ Q Parameter Space γ B Parameter Space Snowmass report (2013) arXiv:1311.0029 Tulin Phys. Rev. D 89, 11408 (2014)
Dark Photons: Why? http://hallaweb.jlab.org/experiment/APEX Experimental searches for γ Q e + γ Q e − APEX (spring 2016) at Jefferson Laboratory e − e − 10 − 2 � ǫ Q � 10 − 10 ◮ γ ◮ 65 MeV ≤ m γ Q ≤ 550 MeV Z Z Experimental searches for γ B γ γ Q Jlab Eta Factory (JEF) Experiment π o 10 − 1 � α B � 10 − 7 ◮ η u, d, s ◮ 140 MeV ≤ m γ B ≤ 550 MeV γ https://cnidlamp.jlab.org/RareEtaDecay/JDocDB/system/files/biblio/2015/04/jef-gan-aps-pdf.pdf And many more other experiments
Implications for supernovae Dark matter cooling of PNS 1. produced in the hot core 2. light in mass − → copious amounts! 3. sap energy from the core 4. reduce neutrino energy and burst duration! Raffelt’s Criteria Conditions for fiducial calculations: ◮ T = 30 MeV ◮ ρ = 3 × 10 14 gram / cm 3 ˙ erg E ≈ 10 19 gram s = ⇒ Neutrino burst duration is halfed! ”Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles” (University of Chicago Press, 1996)
How is light dark matter produced ? Nucleon Bremsstrahlung K P 1 P 3 V NN P 2 P 4 What has been studied so far ?! ◮ Axions, Burrows, Turner, Brinkman, Phys. Rev. D 39, 1020,(1989) ◮ Kaluza–Klein gravitons and dilatons, Hannart, Phillips,Reddy, Savage, Nuc. Phys. B 595(2001) ◮ Neutralinos Dreiner, Hanhart, Langenfeld, Phillips Phys. Rev. D 68, 055004 (2003) ◮ Dark Photons Dent, Ferrer, Kraus arxiv: 1201.2683 (2012) Kazanas, Mohapatra, Nussinov Teplitz, Zhang Nuc. Phys. B. 90, 17, (2014)
Current Dark Photon Constraint: Supernova Cooling Dent, Ferrer, Kraus arxiv: 1201.2683 (2012) Production by Bremsstrahlung K K P 1 P 3 P 1 P 3 P 1 P 3 P 1 P 3 π π π π P 4 P 2 P 4 P 2 P 4 P 2 P 4 P 2 K K ( a ) ( b ) ( c ) ( d ) P 1 P 3 π K P 2 P 4 ( e ) Emissivity γ ≤ 10 53 erg / s ← E ≤ 8 × 10 22 erg / g / s → ˙ L ˜
Bremsstrahlung: Soft Radiation Approximation (SRA) Low Phys. Rev. 110, 974 (1958) K K P 1 P 3 P 1 P 3 P 1 P 3 P 1 P 3 P 4 P 2 P 4 P 2 P 4 P 2 P 4 P 2 K K ( a ) ( b ) ( c ) ( d ) γ ≈ − 4 πα em ǫ 2 d 3 k 2 ω ( ǫ µ J µ ) 2 d σ NN → NN d σ pp → pp ˜ � � � � P 1 P 3 P 1 P 2 P 3 P 4 J (2) , J (4) = = + − − − µ µ P 1 · K P 3 · K P 1 · K P 2 · K P 3 · K P 4 · K µ µ Rrapaj, Reddy arxiv:1511.09136 2 α em ǫ 2 � ∞ m γ Q / T n n n p Q ( MT ) 3 / 2 T 4 dx e − x x 3 I (2) ( ) σ (2) ǫ np → np γ Q = ˙ np ( xT ) √ π x m γ Q / T 2 α em ǫ 2 dx e − x x 4 � ∞ n i n j m γ B / T ) σ (4) B ( MT ) 3 / 2 T 5 I (4) ( ǫ ij → ij γ B = ˙ ( xT ) √ π ij M x m γ B / T d σ ni nj → ni nj d σ ni nj → ni nj � � σ (2) (1 − cos θ cm ) , σ (4) (1 − cos 2 θ cm ) = d cos θ cm = d cos θ cm ij ij d θ cm d θ cm
Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database
Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Low T Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database
Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Low T High T Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 10 − 11 ǫ Q 10 − 12 10 − 13 10 − 14 10 − 15 OPEP Cooling: Raffelt Constraint 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 ǫ Q 10 − 12 10 − 13 10 − 14 10 − 15 OPEP Cooling: Raffelt Constraint OPEP Cooling [ Dent et al. (2012) ] 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 10 − 14 OPEP Cooling: Raffelt Constraint 10 − 15 OPEP Cooling [ Dent et al. (2012) ] SRA Cooling: Raffelt Constraint 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 OPEP Cooling: Raffelt Constraint 10 − 14 OPEP Cooling [ Dent et al. (2012) ] 10 − 15 SRA Cooling: Raffelt Constraint OPEP Trapping [ Dent et al. (2012) ] 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 OPEP Cooling: Raffelt Constraint OPEP Cooling [ Dent et al. (2012) ] 10 − 14 SRA Cooling: Raffelt Constraint OPEP Trapping [ Dent et al. (2012) ] 10 − 15 SRA Trapping: τ ( R S ) = 3 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]
Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 SN87a Excluded Region 10 − 9 ǫ Q 10 − 10 E = 10 19 erg/g/s SRA: ˙ 10 − 11 SRA Trapping: τ ( R S ) = 3 E = 8 × 10 22 erg/g/s [ Dent et al. (2012) ] OPEP: ˙ OPEP Trapping [ Dent et al. (2012) ] 10 − 12 10 0 10 1 10 2 10 3 m γ Q [MeV]
What about the dark leptophobic photon ?! No Current Supernova constraint!
Dark photon coupled only to baryonic current Rrapaj, Reddy arxiv:1511.09136 10 − 10 10 − 12 10 − 14 10 − 16 SN87a Excluded Region 10 − 18 α B 10 − 20 10 − 22 SRA: Cooling 10 − 24 SRA: Trapping Neutron Optics [Leeb et al. 1992] 10 − 26 Neutron Scattering [Barbieri & Ericson, 1975] 10 − 28 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 10 3 m γ B [MeV]
So, did we ‘solve’ this issue?
So, did we ‘solve’ this issue? NOPE
Uncertainties in establishing constraints Scattering Rate: Bremsstrahlung ◮ SRA valid only for ω/ E CM ≪ 1 (perhaps effective field theories and two body currents) ◮ medium effects not included (rescattering, nucleon excitation lifetimes) ◮ ...
Recommend
More recommend