structure and rheology of surfactant solutions
play

Structure and Rheology of Surfactant Solutions Weizhong Zou # , - PowerPoint PPT Presentation

Structure and Rheology of Surfactant Solutions Weizhong Zou # , Taraknath Mandal # , Mike Weaver + , Peter Koenig , Sumanth Jamadagni, Geoffrey Reynolds, and Ronald G. Larson # # Department of Chemical Engineering, University of Michigan, Ann


  1. Structure and Rheology of Surfactant Solutions Weizhong Zou # , Taraknath Mandal # , Mike Weaver + , Peter Koenig ‡ , Sumanth Jamadagni, Geoffrey Reynolds, and Ronald G. Larson # # Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 + Analytic Sciences, The Procter & Gamble Company, Mason, OH 45040 ‡ Computational Chemistry, Modeling and Simulation, The Procter & Gamble Company , West Chester, OH 45069 Sponsors: Procter and Gamble, NSF Peter Koenig Mike Weaver Weizhong Zou Taraknath Mandal

  2. The Challenge of Mul.ple Length and Time Scales in Surfactant Solu.ons 10 nm 1 nm sodium dodecyl sulfate 10 cm 100 nm Entangled Network 1 µ m 10 23 degrees of freedom! http://www.ifnh.ethz.ch/vt/research/projects/vivianel

  3. 10% SLES 10% No additives Micellar solutions: the salt curve limonene citronellol vanillin linalol D C E B A DPG Linalool Cumene Increase surfactant/salt concentration

  4. Umbrella Sampling Weighted Histogram Analysis Method (WHAM) PMF z = r, radial coordinate molecular dynamics (MD) simulations: d 2 v i m i dt 2 = f i Video from student Kyle Huston density

  5. Micelle Size Distribution (inferred from potentials of mean force) Yuan and Larson, JPC B (2015) , − (+ "$% , , ) , = + " ∆+ " + + % PMF = , + - . /ℓ2(! " ) + " = + " 5 " ↔ 5 "$% + 5 % n-1 surfactants n surfactants C 16 E 22 , ! " = ! "$% ! % &'( −∆+ " - . / 12:07:01 Time

  6. Simulation of scission energy using weighted histograms Peter Koenig, P&G Use bead count in region to bias simula7on Cates, M., & Candau, S., J. Phys.: Condens. Matter (1990), 6869. towards scission/fusion. æD ö PLUMED, Comp. Phys. Comm. sciss G c(L) ~ exp(– L / ) ç ÷ µ L exp 180 (2009), 1961 ç ÷ kT è ø s = 1 2 k(N({x i ,y i ,z i },v) − N 0 ) 2 V TaraknathMandal d

  7. Micellar relaxation dynamics Reptation: new micelle Edwards, De Gennes, tube size break t rep ~L 3 Micelle breakage & Re-joining: M.E. Cates (1989): t break ~1/L Slide from Peter Koenig, P&G

  8. Pointer algorithm: simulation of ensemble of micelles Breakage Rejoining Contour length Reptation 3luctuations CR (Double reptation) G(t) = G N µ 2 (t) + Rouse + bending modes Zou, W. and Larson, R.G. J Rheology 58 (2014) 681-721.

  9. Fitting Data <L> = 1.6 µ m l p = 112 nm t br / t rep = 1.8 Procter and Gamble is using this predicBve method in their research into design of shampoos and body washes 9

  10. Lamellar Gels for Hair Conditioners 10 Cationic Excess Water Fatty Alcohol Surfactant (85-95%) Cetostearyl Alcohol Behentrimonium (cetyl : stearyl = 1:2.5 by weight) methosulfate (BTMS) Forms a lamellar gel network of 1. regularly spaced bilayers with 2. trapped interlamellar water and bulk water Additives • Salts (NaCl/EDTA) • Perfumes • Preservatives S. Fukushima, M. Takahashi, and M. Yamaguchi, “Effect of cetostearyl alcohol on stabilization of oil-in-water emulsion. I. Difference in the effect by mixing cetyl alcohol with stearyl alcohol,” J. Colloid Interface Sci. , vol. 57, no. 2, pp. 201–206, 1976.

  11. Self-assembly of surfactants in water 11 • In these cosmetic emulsions, critical packing parameter ~ 1 • Form lamellar bilayers • Two different phases of lamellar bilayer structures depending on the temperature : • Liquid crystalline (L α ) phase – above gel transition temperature • Gel phase (L β ) phase – below gel transition temperature Hydrocarbon chains in the bilayer can exist in a number of physical states: Disordered state Ordered state: Hexagonally packed Mouritsen, Ole G.. “Lipids, curvature, and nano-medicine*.” European journal of lipid science and technology : EJLST (2011).

  12. Solid-like Creep Response and “Apparent Yield-Stress” < 18 Pa Solid-like creep Partial strain response, with ! ∝ # 0.25 recovery > 18 Pa Apparent yielding No strain behavior, with ! ∝ # 1.35 recovery, flows like a fluid

  13. Example of velocimetry raw data Materials: Ternary system lamellar gel network seeded with fluorescent tracer particles (diameter 1.5 um, 0.1 vol%). Instruments: • MCR 702 rheometer • Cone (2°) and plate geometry • Fluorescent microscope test output: torque → stress testing fluid microscope input: rotation speed → shear rate Y. Wei, M. J. Solomon, and R. G. Larson, “Time-dependent shear rate inhomogeneities and shear bands in a thixotropic yield-stress fluid under transient shear,” Soft Matter, pp.7956–7967, 2019.

  14. Shear banding Ideal profile Plug flow

  15. END

Recommend


More recommend