morphology and rheology of immiscible polymer blends
play

Morphology and Rheology of Immiscible Polymer Blends under Electric - PowerPoint PPT Presentation

Morphology and Rheology of Immiscible Polymer Blends under Electric Fields H. Orihara 1 , Y. Nishimoto 1 , K. Aida 1 , Y. H. Na 1 , T. Nagaya 2 1 Hokkaido University, 2 Oita University Immiscible polymer blends Rheology Morphology Close


  1. Morphology and Rheology of Immiscible Polymer Blends under Electric Fields H. Orihara 1 , Y. Nishimoto 1 , K. Aida 1 , Y. H. Na 1 , T. Nagaya 2 1 Hokkaido University, 2 Oita University

  2. Immiscible polymer blends Rheology Morphology Close relationship Doi and Ohta, 1991 Constitutive equations Interface tensor Interface area density Excess stress from Interfacial tension(Batchelor, Doi, Onuki) Experimental tests (Takahashi et al.)

  3. Effect of electric fields Immiscible polymer blend electro-rheological (ER) fluid ( Inoue et al. 1995 ) LCP OIL CH CH 3 3 PDMS SiO CH SiO CH 3 3 + CH (CH ) m 3 2 3 PIB n OCH CH O COO CN 2 2 MPS m/(m+n) = 0.2, m+n =50 ER effect is due to morphological change. Tajiri, K., K. Ohta, T. Nagaya, H. Orihara, Y. Ishibashi, M. Doi and M. Inoue, J. Rheol. 41 , 335-341 (1997). Kimura, H., K. Aikawa, Y. Masubuchi, J. Takimoto, K. Koyama and K. Minagawa, Rheol. Acta 37 54-60 (1998). 3D observations!

  4. System combining CLSM and rheometer MCR301, Anton Paar CSU22, YOKOGAWA

  5. Outline Subjected to a step electric field without shear flow 1. Coalescence of droplets 2. Shear modulus of columnar structure Subjected to a step electric field with shear flow 3. Interface tensor 4. Separation of viscous, interfacial and electric stresses 5. Relationship between excess stress and interface tensor

  6. Experiment Shear flow Rheometer Focal plane z Electric field y x Piezo-actuator 5Hz Glass Plate Frame rate 500 f/s with ITO Sample 400x390x50 pixels Objective Lens 163x163x56 µ m 3 CSLM Gap: 200mm, Diameter: 35 mm Blend of LCP and PIB(Polyisobutylene)

  7. Coalescence of droplets and column formation without shear flow

  8. Blend: LCP(65 Pa s)/PIB(7.8 Pa s) at 25 ℃ Preshear of 200 s -1 for 20 min Application of ac electric field (512 Hz) without shear flow LCP:PIB=1:6 ( φ =0.14) E 113mm Coalescence 0 s 20 s 35 s 100 s 168mm (a) 2 kV amp /mm Elongation 0 s 20 s 35 s 100 s (b) 4 kV amp /mm

  9. Movies (8 times as fast) 2 kV amp /mm 5 kV amp /mm

  10. 3D spatial correlation function Spheroid Average lenghts of semi-axes

  11. Scaling property Assuming that all the droplets keep spherical shape, Scaling property holds ? Yes ? No !

  12. Growth kinetics on the basis of hierarchical model E t =0 Viscous friction Dipole-dipole interaction Exponential growth

  13. Volume fraction dependence

  14. 5/3

  15. Sphere Spheroid t Deformation (Torza et al, 1971)

  16. Numerical calculation

  17. Storage Shear Modulus of Columnar Structure 75 µ m E 200 µ m 100 sec later after applying an ac electric field with an amplitude of 5kV/mm and a frequency of 2Hz.

  18. Emergence of elasticity LCP:DMS=1:6 Oscillatory measurement f =2 Hz

  19. Dependence of G’ on electric field strength

  20. Electric stress on slant column Interfacial stress Electric stress

  21. Interfacial tension E dependence f dependence

  22. Transient process subjected to a step electric field with shear flow

  23. Transient shear stress Blend with the same viscosity LCP:PIB=1:6 ( η =33.5 Pa s at 28 ℃ ) E amp =6 kV/mm (1000Hz) E on

  24. 3D images in the transient process y E 163 µ m z 56 µ m 0 s 163 µ m 1 s Flow x 2 s 3 s 4 s

  25. Movie in the transient process y E 163 µ m z 56 µ m 163 µ m x Flow Real time speed

  26. Interface tensor Symmetrical and traceless Sphere Ellipsoid Slant ellipsoid

  27. Time evolution of interface tensor diagonal spheroid

  28. Off-diagonal elements -q zx shear stress close relation

  29. Mapping from structure to ellipsoid Ellipsoid Structure

  30. c a b

  31. z E y Real time speed x Flow

  32. (Batchelor 1970, Doi 1987, Onuki 1987) Maxwell stress tensor

  33. c ?

  34. Electric stress Shear flow Electric torque on ellipsoid Electric stress (Halsey et al., 1992)

  35. approximation 240 Pa

  36. 200 Pa (theory 240 Pa)

  37. Relaxation process to droplets after removing E From columnar structure E off E on

  38. Real time speed

  39. From network structure E off E on

  40. Real time speed

  41. Removal of both electric field and shear flow From columnar structure E on

  42. Real time speed

  43. From network structure E on

  44. Real time speed

  45. Summary Subjected to a step electric field without shear flow 1. Coalescence of droplets in electric filed Hierarchical model is applicable Exponential growth Non-exponential growth Spheroid Sphere 2. Shear modulus of columnar structure Emergence of elasticity under electric fields Dependences of field strength and frequency

  46. Subjected to a step electric field under shear flow 3. 3D images 4. Separation of viscous, interfacial and electric stresses 5. Interface tensor

  47. Future subject Structure Can Doi-Ohta theory describe the change from droplet-dispersed structure to network one? Topology changes!

  48. Different viscosities (Batchelor, 1970)

  49. Calculation of interface tensor

Recommend


More recommend