rheology of lamellar and smectic phases
play

Rheology of lamellar and smectic phases S. Komura, T. Kato (Tokyo - PowerPoint PPT Presentation

Rheology of lamellar and smectic phases S. Komura, T. Kato (Tokyo Metropolitan University) S. Fujii (Nagaoka University of Technology) Y. Ishii (Waseda University) C.-Y. D. Lu (National Taiwan University) Outline Background Rheology of


  1. Rheology of lamellar and smectic phases S. Komura, T. Kato (Tokyo Metropolitan University) S. Fujii (Nagaoka University of Technology) Y. Ishii (Waseda University) C.-Y. D. Lu (National Taiwan University)

  2. Outline  Background  Rheology of lamellar phase  Rheology of smectic phase close to transition point  Summary

  3. 1D layered structures  1D solid + 2D fluid  Thermotropic smectic phases (Sm A, Sm C)  Lyotropic lamellar phases ( L α , L β ) surfactant hydrophilic hydrophobic thermotropic lyotropic smectic phases lamellar phases

  4. Elastic energy de Gennes (1969)  Layer displacement field:  Elastic energy density: 2 f = K 2 u ) 2 + B  ∂ u  2 ( ∇ ⊥     2 ∂ z K : bending constant

  5. Shear thinning behavior of smectic phases: universality? Yamamoto, Tanaka (1995) Meyer, Asnacios, Kleman (2001) C12E5 shear thinning

  6. Outline  Background  Rheology of lamellar phase  Rheology of smectic phase close to transition point  Summary

  7. Dislocation loops in lamellar phases  Dissipation due to motion of dislocations edge screw

  8. Lu et al . (2008) Dynamics of dislocation loops  Steady state stress: σ ~ ρ s τ e ρ s :screw density τ e : edge line tension  Birth and sink of dislocations: ∂ ρ s ξ ∂ t = (˙ γ / bl e ) − (˙ γ l s / ξ ) ρ s  Steady state:  Stress scaling:

  9. Strey et al . (1990) Phase diagram of C12E5  Concentration:  Temperature:  30~45 wt%  66~71 ℃ (339~344K) sponge Newtonian lamellar Snabre, Porte (1990)

  10. Flow curves Lu et al . (2008)

  11. Temperature effect

  12. Concentration effect MAK our theory

  13. Outline  Background  Rheology of lamellar phase  Rheology of smectic phase close to transition point  Summary

  14. Thermotropic LC: 8CB  4-n-alkyl-4’-cyano-bipheny (8CB) ~ 2nm 33.4 ℃ 40.5 ℃ smectic nematic isotropic

  15. Rheology of 8CB Panizza, Archambault, Roux (1995) Colby et al . (1997) 31 ℃ 26 ℃ m = 2 Universality ?

  16. Helfrich (1978) Nelson, Toner (1981) Smectic-Nematic transition  Dislocation loop-mediated smectic melting  Dislocation unbinding transition  Free energy of a loop: F = τ  − k B T (  / b )ln p τ : line energy p : coordination number τ b  Transition temperature: T SN = k B ln( p )  Divergence of defect size

  17. Fujii et al . (2010) Flow curves of 8CB T SN =33.4 ℃

  18. Three different regimes  Regime 0: Hurschel- T =33.1 ℃ Bulkely model n σ = σ y + A ˙ γ  Regime I: power law behavior 1/ m σ = C ˙ γ  Regime II: Newtonian

  19. Obtained parameters Regime 0 Regime I

  20. Microscope observation T =25 ℃ T =29 ℃ T =31 ℃ a b c γ = 1s -1 ˙ Focal Conic f d e Domains T =33 ℃ γ = 0.1s -1 1s -1 10s -1 ˙

  21. Horn, Kleman (1978) Yield stress Fujii et al . (2010)  Network of focal conic domains with size L  Needed stress to deform network σ y ≈ K / L 2  Constant K  Unbinding behavior?

  22. High shear stress region heating rate=0.05K/min

  23. Fujii et al . (2010) Dynamic phase diagram + perpendicular leek? cf. Safinya, Sirota, Plano (1991)

  24. Viscoelasticity of 8CB T = 25 ℃ T = 29 ℃ T = 31 ℃ T = 33 ℃

  25. Scaling of G’ with L  Relation between G ’ and FCD size G '~ 1/ L  Effective surface tension σ eff ~ KB  Similarity to onion phases

  26. Summary  Defect mediated rheology in lamellar and smectic phases (structural rheology)  Lyotropic lamellar phase  motion of dislocation loops  Thermotropic smectic phase close to T SN  growth of FCD  effective surface tension

  27. References  C.-Y. D. Lu, P. Chen, Y. Ishii, S. Komura, and T. Kato, Eur. Phys. J. E 25 , 91-101 (2008).  S. Fujii, Y. Ishii, S. Komura, and C.-Y. D. Lu, Europhys. Lett. 90 , 64001 (2010).

Recommend


More recommend