stochastic load balancing on unrelated machines
play

Stochastic Load Balancing on Unrelated Machines Viswanath Nagarajan - PowerPoint PPT Presentation

Stochastic Load Balancing on Unrelated Machines Viswanath Nagarajan Industrial & Operations Engineering Department University of Michigan Joint work with Anupam Gupta (CMU), Amit Kumar (IIT Delhi), Xiangkun Shen (UM) V. Nagarajan (UM)


  1. Stochastic Load Balancing on Unrelated Machines Viswanath Nagarajan Industrial & Operations Engineering Department University of Michigan Joint work with Anupam Gupta (CMU), Amit Kumar (IIT Delhi), Xiangkun Shen (UM) V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 1 / 25

  2. Outline Introduction 1 Motivation Related Work Results Techniques 2 Effective Size Algorithm Conclusion 3 V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 2 / 25

  3. Load Balancing Problem Schedule jobs on machines to minimize the maximum load. One of the first approximation algorithms devised [Graham 66] . AB ACD D BC ABCD D AC A B C D V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 3 / 25

  4. Load Balancing Problem Schedule jobs on machines to minimize the maximum load. One of the first approximation algorithms devised [Graham 66] . AB ACD D BC ABCD D AC A B C D V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 3 / 25

  5. Load Balancing Problem Schedule jobs on machines to minimize the maximum load. One of the first approximation algorithms devised [Graham 66] . AB ACD D BC ABCD D AC A B C D V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 3 / 25

  6. Load Balancing Problem Schedule jobs on machines to minimize the maximum load. One of the first approximation algorithms devised [Graham 66] . AB ACD D BC ABCD D AC A B C D V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 3 / 25

  7. Load Balancing Problem Schedule jobs on machines to minimize the maximum load. One of the first approximation algorithms devised [Graham 66] . AB ACD D BC ABCD D AC A makespan B C D V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 3 / 25

  8. Load Balancing (Formally) n jobs and m machines. p ij = size of job j on machine i . Identical machines: p ij = p j . Related machines: ( p ij ) matrix rank 1. Unrelated machines: general case. Find an assignment to minimize makespan: m � min max p ij . J 1 , ··· J m i =1 j ∈ J i J i = set of jobs assigned to machine i . V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 4 / 25

  9. Optimization under Uncertainty In many situations precise input data unknown. Various models to deal with uncertainty. Stochastic : input drawn from some distribution. Robust : input drawn from some uncertainty set. Online : no prior information about input. V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 5 / 25

  10. Optimization under Uncertainty In many situations precise input data unknown. Various models to deal with uncertainty. Stochastic : input drawn from some distribution. Robust : input drawn from some uncertainty set. Online : no prior information about input. Here: stochastic setting. V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 5 / 25

  11. Stochastic Load Balancing n jobs and m machines. Random variable X ij is size of job j on machine i . Arbitrary distributions. Independent and known upfront. Find an assignment { J i } m i =1 to minimize expected makespan:    m �  . max E X ij i =1 j ∈ J i ? ? ? ? ? V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 6 / 25

  12. Stochastic Load Balancing n jobs and m machines. Random variable X ij is size of job j on machine i . Arbitrary distributions. Independent and known upfront. Find an assignment { J i } m i =1 to minimize expected makespan:    m �  . max E X ij i =1 j ∈ J i ? ? ? ? ? V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 6 / 25

  13. Stochastic Load Balancing n jobs and m machines. Random variable X ij is size of job j on machine i . Arbitrary distributions. Independent and known upfront. Find an assignment { J i } m i =1 to minimize expected makespan:    m �  . max E X ij i =1 j ∈ J i ? ? ? ? ? ? ? ? ? ? V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 6 / 25

  14. Stochastic Load Balancing n jobs and m machines. Random variable X ij is size of job j on machine i . Arbitrary distributions. Independent and known upfront. Find an assignment { J i } m i =1 to minimize expected makespan:    m �  . max E X ij i =1 j ∈ J i ? ? ? ? ? V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 6 / 25

  15. Stochastic Load Balancing n jobs and m machines. Random variable X ij is size of job j on machine i . Arbitrary distributions. Independent and known upfront. Find an assignment { J i } m i =1 to minimize expected makespan:    m �  . max E X ij i =1 j ∈ J i ? ? ? ? ? minimize expected makespan V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 6 / 25

  16. Natural Approach for Stochastic Optimization 1 Replace each random variable X in the stochastic problem by deterministic surrogate d ( X ). 2 Solve the resulting deterministic problem. 3 Return the same solution for the stochastic problem. V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 7 / 25

  17. Deterministic Surrogate for Load Balancing? Expected size? V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  18. Deterministic Surrogate for Load Balancing? Expected size? Type 1: size 1 (deterministic). 1 Type 2: size ∼ (0 , 1) Bernoulli r.v. with p = √ m . m − √ m machines m − √ m machines log m E [ mkspan ] = m − √ m jobs: expectation 1 √ m log log m √ m machines √ m 1 m jobs: expectation √ m V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  19. Deterministic Surrogate for Load Balancing? Expected size? Type 1: size 1 (deterministic). 1 Type 2: size ∼ (0 , 1) Bernoulli r.v. with p = √ m . m − √ m machines m − √ m machines log m E [ mkspan ] = m − √ m jobs: expectation 1 √ m log log m √ m machines √ m 1 m jobs: expectation √ m V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  20. Deterministic Surrogate for Load Balancing? Expected size? Type 1: size 1 (deterministic). 1 Type 2: size ∼ (0 , 1) Bernoulli r.v. with p = √ m . m − √ m machines m − √ m machines m − √ m machines m − √ m machines log m E [ mkspan ] ≤ 2 E [ mkspan ] = √ m log log m √ m machines √ m machines √ m 1 m jobs: expectation √ m V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  21. Deterministic Surrogate for Load Balancing? Expected size? Type 1: size 1 (deterministic). 1 Type 2: size ∼ (0 , 1) Bernoulli r.v. with p = √ m . m − √ m machines m − √ m machines m − √ m machines m − √ m machines log m E [ mkspan ] ≤ 2 E [ mkspan ] = √ m log log m √ m machines √ m machines √ m 1 m jobs: expectation √ m V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  22. Deterministic Surrogate for Load Balancing? Expected size? Type 1: size 1 (deterministic). 1 Type 2: size ∼ (0 , 1) Bernoulli r.v. with p = √ m . m − √ m machines m − √ m machines m − √ m machines m − √ m machines log m E [ mkspan ] ≤ 2 E [ mkspan ] = √ m log log m √ m machines √ m machines √ m 1 m jobs: expectation √ m Effective size [Hui 88] [Elwalid, Mitra 93] [Kelly 96] [Kleinberg, Rabani, Tardos 00] . V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 8 / 25

  23. Outline Introduction 1 Motivation Related Work Results Techniques 2 Effective Size Algorithm Conclusion 3 V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 9 / 25

  24. Related Work: Deterministic Job Sizes Identical machines: ◮ List Scheduling: 2-approximation [Graham 66] . ◮ Sorted List Scheduling: 4 3 -approximation [Graham 69] . ◮ PTAS [Hochbaum, Shmoys 87] . Related machines: ◮ 2-approximation [Morrison 88] [Gonzalez, Ibarra, Sahni 77] . ◮ PTAS [Hochbaum, Shmoys 88] . Unrelated machines: ◮ 2-approximation [Lenstra, Shmoys, Tardos 90] . ◮ APX-hardness [Shmoys, Tardos 93] . ◮ 2 − 1 6 + ǫ -approximation for restricted assignment [Jansen, Rohwedder 17] . V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 10 / 25

  25. Related Work: Stochastic Job Sizes O (1)-approximation for identical machines [Kleinberg, Rabani, Tardos 00] . #P-hard to evaluate objective Better results for special classes of job size distributions [Goel, Indyk 99] . ◮ Poisson distributed job sizes: 2-approximation. ◮ Exponential distributed job sizes: PTAS. V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 11 / 25

  26. Related Work: Stochastic Job Sizes O (1)-approximation for identical machines [Kleinberg, Rabani, Tardos 00] . #P-hard to evaluate objective Better results for special classes of job size distributions [Goel, Indyk 99] . ◮ Poisson distributed job sizes: 2-approximation. ◮ Exponential distributed job sizes: PTAS. Related knapsack and bin-packing problems [Deshpande, Li 11] . Other models for stochastic combinatorial optimization: Two-stage [Shmoys, Swamy 04] [Gupta, Pal, Ravi, Sinha 04] .. Adaptive [Dean Goemans Vondrak 08] [Guha Munagala 07] [Bhalgat Goel Khanna 11] .. V. Nagarajan (UM) Stochastic Load Balancing Aussois, 2019 11 / 25

Recommend


More recommend