star formation in alternative dark matter dwarfs then and
play

Star formation in alternative dark matter dwarfs: then and now Mark - PowerPoint PPT Presentation

CDM ETHOS ETHOS-CDM Star formation in alternative dark matter dwarfs: then and now Mark R. Lovell 1,2 , Jess Zavala 1 + ( 1 University of Iceland, 2 Durham, *lovell@hi.is) DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] Mark Lovell,


  1. CDM ETHOS ETHOS-CDM Star formation in alternative dark matter dwarfs: then and now Mark R. Lovell ⋆ 1,2 , Jesús Zavala 1 + ( 1 University of Iceland, 2 Durham, *lovell@hi.is) DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  2. Power spectrum cutoff: low redshift 10 10 10 9 • ] M * [M O 10 8 X obs. 10 7 CDM 10 6 L 6 =10 L 6 =120 10 5 10 20 30 40 50 70 85 Lovell+2017 V 1kpc [km s -1 ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  3. Power spectrum cutoff: low redshift 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  4. Power spectrum cutoff: low redshift 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) (1.4keV) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Lovell+2012 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  5. Power spectrum cutoff: low redshift How is halo/galaxy formation di ff erent at high redshifts? How about the oldest stars? 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) (1.4keV) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Lovell+2012 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  6. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  7. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  8. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  9. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  10. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM 1.0 0.8 z=10 z=6 0.6 0.4 Matched pairs Median relations 0.2 0.0 10 8 10 9 10 10 10 11 Lovell+2019 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  11. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM Bound gas mass 1.0 2.5 0.8 z=10 z=6 0.6 2.0 z=10 0.4 z=6 Matched pairs M g,ETHOS /M g,CDM Median relations 0.2 1.5 0.0 10 8 10 9 10 10 10 11 1.0 Lovell+2019 M 200,X [M O • ] 0.5 0.0 0.0 10 8 10 9 10 10 10 11 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  12. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM Bound gas mass 1.0 2.5 0.8 z=10 SFR z=6 0.6 2.0 z=10 0.4 z=6 Matched pairs M g,ETHOS /M g,CDM Median relations 0.2 1.5 0.0 10 8 10 9 10 10 10 11 1.0 Lovell+2019 M 200,X [M O • ] 0.5 0.0 0.0 10 8 10 9 10 10 10 11 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  13. The galaxy population & reionisation Lovell+2018 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  14. The galaxy population & reionisation Lovell+2018 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  15. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 400 400 400 [10,11] 200 200 200 0 0 0 − 200 − 200 − 200 z= 6.0 R>0.90 − 400 − 400 − 400 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  16. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 CDM 200 200 200 ETHOS 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 R>0.90 − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  17. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  18. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS X 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 LG-all obs. − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  19. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS X 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 LG-all obs. − 400 − 400 − 400 Apostle dwarfs 0.4 0.4 200 300 400 500 600 700 O 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

Recommend


More recommend