spin readout of a single electron in a double quantum dot
play

Spin readout of a single electron in a double quantum dot Farzad - PowerPoint PPT Presentation

Single electron in DQD Spin readout of a single electron in a double quantum dot Farzad Qassemi EPIQ, Univ de Sherbrooke Nov 5, 2013 Farzad Qassemi Spin readout of a single electron in a double quantum dot Single electron in DQD Outline


  1. Single electron in DQD Spin readout of a single electron in a double quantum dot Farzad Qassemi EPIQ, Univ de Sherbrooke Nov 5, 2013 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  2. Single electron in DQD Outline Single and double quantum dots Coherent spin manipulation in DQD Stationary current for spinless and spinful charge Readout using satellite peaks Collaboration: Julien Camirand Lemyre, Michel Pioro-Ladriere Farzad Qassemi Spin readout of a single electron in a double quantum dot

  3. Single electron in DQD Single electron in double quantum dot 200 nm Figure: SEM picture of DQD in Michel’s lab Farzad Qassemi Spin readout of a single electron in a double quantum dot

  4. Single electron in DQD Coulomb Blockade H QD = Un ( n − 1 ) − enV g U = e 2 � k B T C g Farzad Qassemi Spin readout of a single electron in a double quantum dot

  5. Single electron in DQD Single electron in double dot Left-Right charging energy Ω H 0 = ǫ ( | L �� L | − | R �� R | ) Q Left-Right coherent coupling H Q = Ω( | L �� R | + | R �� L | ) Farzad Qassemi Spin readout of a single electron in a double quantum dot

  6. Single electron in DQD Eigen-energies Zeeman splitting H 0 = b z σ z , b z = g µ B ( B zL + B zR ) Z Farzad Qassemi Spin readout of a single electron in a double quantum dot

  7. Single electron in DQD Eigen-energies Zeeman splitting H 0 = b z σ z , b z = g µ B ( B zL + B zR ) Z Unperturbed Hamiltonian H 0 = ǫ d z + Ω d x + b z σ z DQD Farzad Qassemi Spin readout of a single electron in a double quantum dot

  8. Single electron in DQD Eigen-energies Zeeman splitting H 0 = b z σ z , b z = g µ B ( B zL + B zR ) Z Unperturbed Hamiltonian H 0 = ǫ d z + Ω d x + b z σ z DQD Farzad Qassemi Spin readout of a single electron in a double quantum dot

  9. Single electron in DQD Coherent spin rotation H Z = δ b x σ x d z , δ b x = g µ B ( B xL − B xR ) / 2 � δ b x B 0 x z � � B R B L e- Farzad Qassemi Spin readout of a single electron in a double quantum dot

  10. Single electron in DQD Double quantum dot H DQD = ǫ d z + Ω d x + b z σ z + δ b x σ x d z B L B R Ω n L n R V R V L Farzad Qassemi Spin readout of a single electron in a double quantum dot

  11. Single electron in DQD Effective Hamiltonian e S He − S ≈ ǫ d z + b z σ z + Ω d x + Ω δ b x ˜ H = σ x d x b z [ b z σ z , S ] = δ b x σ x ⇒ S ∝ δ b x σ y d z b z Farzad Qassemi Spin readout of a single electron in a double quantum dot

  12. Single electron in DQD Effective Hamiltonian e S He − S ≈ ǫ d z + b z σ z + Ω d x + Ω δ b x ˜ H = σ x d x b z [ b z σ z , S ] = δ b x σ x ⇒ S ∝ δ b x σ y d z b z tunneling assisted spin-flip processes ( ǫ ∼ b z ) 1 1 Ω δ b x B z Ω δ b x E 2 3 2 3 � − δ b x Ω Ω − δ b x 4 4 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  13. Single electron in DQD Transport regime Double quantum dot is coupled to the source and drain (1,1) (1,0) A C B (0,1) (0,0) Manipulate Readout Farzad Qassemi Spin readout of a single electron in a double quantum dot

  14. Single electron in DQD Spinless case ρ a ˙ = Γ L ρ 0 + i Ω( ρ ab − ρ ba ) ρ b ˙ = − Γ R ρ b − i Ω( ρ ab − ρ ba ) − Γ R ρ ab ˙ = 2 ρ ab + i ǫρ ab + i Ω( ρ a − ρ b ) − Γ R ρ ba ˙ = 2 ρ ba − i ǫρ ba − i Ω( ρ a − ρ b ) Farzad Qassemi Spin readout of a single electron in a double quantum dot

  15. Single electron in DQD Stationary Current: spinless case Ω 2 Γ R ¯ I = ǫ 2 + (Γ R / 2 ) 2 + Ω 2 ( 2 + Γ R / Γ L ) Γ L = Γ R = 0 . 01, Ω = 0 . 1 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  16. Single electron in DQD Stationary current: spinful case b z = 5 δ b x = Ω = 0 . 5 Γ R = 10 3 Γ L = 0 . 01 Γ L = Γ R = 0 . 01 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  17. Single electron in DQD Can we use it as a readout? b z = 5 , Ω = δ b x = 0 . 5 , Γ R = Γ L = 0 . 01 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  18. Single electron in DQD Analytical expression for satellite peak 4 Ω 2 δ b 2 Γ R x b 2 ¯ I = , Γ R , Γ L ≪ δ b x ∼ Ω ≪ ǫ ∼ b z z ǫ 2 + 4 Ω 2 δ b 2 ( 3 + Γ R / Γ L ) x b 2 z b z = 5 , Ω = δ b x = 0 . 5 , Γ R = Γ L = 0 . 01 Farzad Qassemi Spin readout of a single electron in a double quantum dot

  19. Single electron in DQD Optimal point Lorentzian Heights ¯ I ( 0 ) = Γ R / ( 2 + Γ R / Γ L ) ¯ I ( ǫ = b z ) = Γ R / ( 3 + Γ R / Γ L ) ¯ I ( 0 ) ∼ ¯ I ( ǫ = b z ) Farzad Qassemi Spin readout of a single electron in a double quantum dot

  20. Single electron in DQD Optimal point Lorentzian Heights ¯ I ( 0 ) = Γ R / ( 2 + Γ R / Γ L ) ¯ I ( ǫ = b z ) = Γ R / ( 3 + Γ R / Γ L ) ¯ I ( 0 ) ∼ ¯ I ( ǫ = b z ) Lorentzian Widths � δǫ | ǫ = 0 ∼ Ω ( 2 + Γ R / Γ L ) δǫ | ǫ = b z ∼ Ω δ b x � ( 3 + Γ R / Γ L ) b z � best results Ω ( 2 + Γ R / Γ L ) ∼ b z which gives δǫ | ǫ = b z ∼ δ b x . Farzad Qassemi Spin readout of a single electron in a double quantum dot

  21. Single electron in DQD Summary and Outlook Farzad Qassemi Spin readout of a single electron in a double quantum dot

  22. Single electron in DQD Summary and Outlook Single spin readout 1 We have theoretically analyzed the possibility of new spin readout 2 Extending our model to include the effect of decoherence and relaxation 3 Realizing our theoretical prediction in real experiment (undergoing in Michel’s lab) Farzad Qassemi Spin readout of a single electron in a double quantum dot

  23. Single electron in DQD Spinful case Diagonal elements ( {| 1 � , | 2 � , | 3 � , | 4 �} ≡ {| L ↓� , | L ↑� , | R ↓� , | R ↑�} ) ρ 1 ˙ = Γ L ρ 0 + i δ b x ( ρ 12 − ρ 21 ) + i Ω( ρ 13 − ρ 31 ) ρ 2 ˙ = Γ L ρ 0 − i δ b x ( ρ 12 − ρ 21 ) + i Ω( ρ 24 − ρ 42 ) ρ 3 ˙ = − Γ R ρ 3 − i δ b x ( ρ 34 − ρ 43 ) − i Ω( ρ 13 − ρ 31 ) ρ 4 ˙ = − Γ R ρ 4 + i δ b x ( ρ 34 − ρ 43 ) − i Ω( ρ 24 − ρ 42 ) Stationary solution ( ˙ ρ = 0) ¯ 2 Γ L ¯ ρ 0 = 2 Ω ℑ (¯ ρ 13 ) + 2 Ω ℑ (¯ ρ 24 ) Γ R ¯ ρ 3 = 2 δ b x ℑ (¯ ρ 34 ) + 2 Ω ℑ (¯ ρ 13 ) Γ R ¯ ρ 4 = − 2 δ b x ℑ (¯ ρ 34 ) + 2 Ω ℑ (¯ ρ 24 ) Sanity check: ¯ ρ 0 = ¯ I R = Γ R (¯ ρ 3 + ¯ ρ 4 ) = 2 Γ L ¯ I L Farzad Qassemi Spin readout of a single electron in a double quantum dot

  24. Single electron in DQD Spinful Case Off-diagonal elements ( E ij = E i − E j ) ρ 12 ˙ = iE 12 ρ 12 + i δ b x ( ρ 1 − ρ 2 ) − i Ω ρ ∗ 23 + i Ω ρ 14 iE 13 ρ 13 + i Ω( ρ 1 − ρ 3 ) − i δ b x ρ 23 + i δ b x ρ 14 − Γ R ρ 13 ˙ = 2 ρ 13 iE 14 ρ 14 + i Ω( ρ 12 − ρ 34 ) + i δ b x ( ρ 13 − ρ 24 ) − Γ R ρ 14 ˙ = 2 ρ 14 34 ) − i δ b x ( ρ 24 + ρ 13 ) − Γ R ρ 23 ˙ = iE 23 ρ 23 + i Ω( ρ ∗ 12 − ρ ∗ 2 ρ 23 iE 24 ρ 24 + i Ω( ρ 2 − ρ 4 ) − i δ b x ρ 23 + i δ b x ρ 14 − Γ R ρ 24 ˙ = 2 ρ 24 ρ 34 ˙ = iE 34 ρ 34 + i Ω ρ ∗ 23 − i ωρ 14 − i δ b x ( ρ 3 − ρ 4 ) − Γ R ρ 34 Farzad Qassemi Spin readout of a single electron in a double quantum dot

Recommend


More recommend