speed
play

Speed June 2012 Victor Couture (U. Toronto) Gilles Duranton (U. - PowerPoint PPT Presentation

Speed June 2012 Victor Couture (U. Toronto) Gilles Duranton (U. Toronto) Matt Turner (U. Toronto) Objectives: Assess differences in driving speed across us metropolitan areas Explore their determinants Estimate the costs of


  1. Speed June 2012 Victor Couture (U. Toronto) Gilles Duranton (U. Toronto) Matt Turner (U. Toronto)

  2. Objectives: • Assess differences in driving speed across us metropolitan areas • Explore their determinants • Estimate the costs of congestion and the value of policy responses

  3. Why it matters: • Median us households devotes 18 % of its budget to transportation • Two key questions of transportation economics – What is travel demand? – What does the speed-flow curve look like? (supply) We treat the demand and supply of travel together • Productivity of city transportation is little studied

  4. What we do: 1 . Present a simple demand and supply framework for automobile travel 2 . Estimate city level supply of travel (by trip distance) 3 . Construct a speed index by city 4 . Assess the determinants of this index 5 . Conduct counterfactual policy experiments 6 . Assess the costs of congestion and the value of policy responses to it

  5. Data • Trips: us nhts for 1995 , 2001 , and 2008 • Roads: us hpms for 1995 , 2001 , and 2008 • Employment and population data • Geography • Urban form • Historical transportation data • tti data (for comparison)

  6. Summary statistics for the 100 largest msa s Variable 1995 2001 2008 Panel a . Trip-level data Mean trip distance (km) 12.5 13.2 12.8 (16.2) (17.0) (16.4) Mean trip duration (min) 15.1 17.6 17.4 (14.2) (15.3) (15.2) Mean trip speed (km/h) 43.1 39.4 38.5 (23.0) (22.5) (22.2) Mean trip number (per driver) 4.5 4.2 4.1 (2.6) (2.4) (2.3) Total observed number of trips 152,590 168,765 418,630 Panel b . msa -level data Mean daily vkt (’000,000 km) 51.4 59.7 64.2 (74.7) (85.0) (90.9) Mean daily vtt (’000,000 min) 62.2 79.2 87.3 (91.4) (114.6) (126.2) Mean lane km ( ih , ’000 km) 2.1 2.3 2.4 (2.3) (2.4) (2.4) Mean lane km ( mru , ’000 km) 10.5 11.9 14.4 (13.5) (16.1) (18.1) Mean msa population (’000) 1,747 1,943 2,095 (2,673) (2,915) (3,052)

  7. Trip distance and (inverse) speed: Chicago log inverse speed 4 3 2 1 1 0 log distance -1 -2 -1 0 1 2 3 4 5 6

  8. Trip distance and trip purpose Trip purpose Frequency (1995-2008) km 1995 km 2001 km 2008 To/from Work 23.6% 18.6 18.8 19.1 (19.0) (18.8) (19.1) Work-related business 3.3% 17.6 20.9 18.5 (21.0) (23.4) (21.5) Shopping 21.8% 7.8 8.7 8.2 (11.3) (12.1) (11.1) Other family/personal business 24.3% 9.4 10.1 9.4 (12.8) (14.3) (13.6) School/church 4.6% 11.5 11.5 12.2 (13.3) (13.6) (13.5) Medical/dental 2.2% 13.3 12.8 13.0 (14.9) (13.2) (13.5) Vacation 0.3% 35.1 34.5 25.6 (41.0) (40.3) (34.6) Visit friends/relatives 5.7% 15.7 17.8 17.2 (20.2) (23.0) (22.7) Other social/recreational 13.8% 12.4 12.2 11.1 (17.1) (16.4) (15.1) Other 0.5% 13.4 20.3 22.4 (18.6) (25.4) (23.9)

  9. The supply of travel Inverse-supply curve of travel for trips of distance x in a city: jk = x − γ c s jk exp( c + δ j + ǫ jk ) . j : person k : trip c : time cost x : distance δ j : driver ability γ : elasticity of speed with respect to trip distance c : time cost of a trip of unit distance

  10. The demand for travel Driver’s inverse demand for trip distance x and purpose τ in a city: jk = x − β c d jk exp(Σ T τ =1 A τ χ τ jk + η j + µ jk ) A τ : willingness to pay for trip of type τ χ τ jk : dummy when trip k is of type τ η j : driver’s preference β : demand elasticity of speed distance

  11. Maximisation Driver maximisation (monopsony): c d = MC ( x ) ≡ d ( x c s ) = (1 − γ ) c s dx

  12. • Supply and demand system: D j χ j + Σ T − 1 τ =1 ˜ A τ χ τ ln x jk = jk + ζ jk c + δ j χ j − γ ln x jk + ǫ jk , ln c jk = γ − β + η j − δ j β − γ + A T D j ≡ − c β − γ A τ ≡ A T − A τ ˜ γ − β , τ ∈ { 1 ,..,T − 1 } µ jk − ǫ jk ζ jk ≡ β − γ χ j : dummy for trips by person j ⇒ Identification: • A τ (willingness to pay for trip of type τ ) explains demand but not supply • so does χ τ jk (dummy when trip k is of type τ ) • and η j (driver’s preference) but likely correlated with δ j (driver ability)

  13. Equilibrium ( ) ( ) c d c d x x 1 2 ln c a b ' ( ) b MC 1 x ( ) MC 2 x ln x

  14. Instrument 1 : trip type dummies • Predicts distance well • Otherwise orthogonal to speed? Some trips may be more likely if traffic is good (selection) – Restrict attention to non-discretionary trips – Extensive controls for trip characteristics

  15. Instrument 2 : mean distance by trip type • Predicts distance well • Otherwise orthogonal to speed? Some trips may be longer if traffic is good – Fine provided the bias is uncorrelated with mean trip distance – Restrict attention to non-discretionary trips – Extensive control for trip characteristics • The two instruments might fail for different reasons

  16. Estimating equation Time cost of travel per km = f(city effect, distance in the city, trip characteristics, driver characteristics): c i + Y j δ − γ i ln x jk + T jk ξ + ǫ ijk . ln c ijk = With ols and tsls

  17. Estimation of inverse-supply curves (averages across msa s) (1) (2) (3) (4) (5) (6) (7) (8) (9) ols 1 ols 2 ols 3 iv 1 iv 2 iv 3 iv 4 fe iv fe Panel a . 100 largest msa s for 2008 Mean c 1.407 1.338 1.474 1.402 1.281 1.281 1.237 1.214 1.266 (0.092) (0.090) (0.092) (0.102) (0.149) (0.143) (0.138) (0.142) (0.760) Mean γ 0.428 0.426 0.425 0.426 0.360 0.359 0.335 0.346 0.357 (0.032) (0.032) (0.032) (0.037) (0.075) (0.072) (0.064) (0.074) (0.402) Panel b . 50 largest msa s for 2008 Mean c 1.407 1.342 1.478 1.399 1.261 1.251 1.222 1.180 1.258 (0.065) (0.067) (0.069) (0.070) (0.098) (0.091) (0.104) (0.087) (0.120) Mean γ 0.424 0.421 0.420 0.419 0.342 0.336 0.320 0.321 0.346 (0.018) (0.017) (0.017) (0.020) (0.046) (0.042) (0.045) (0.042) (0.054) Panel c . 50 largest msa s for 2001 Mean c 1.383 1.324 1.454 1.350 1.324 1.320 1.298 1.262 1.244 (0.072) (0.069) (0.071) (0.067) (0.112) (0.122) (0.118) (0.131) (0.240) Mean γ 0.412 0.407 0.406 0.394 0.348 0.345 0.332 0.342 0.341 (0.022) (0.021) (0.021) (0.022) (0.060) (0.065) (0.065) (0.066) (0.112) Panel d . 50 largest msa s for 1995 Mean c 1.187 1.171 1.199 1.133 1.121 1.115 1.048 1.070 1.057 (0.103) (0.081) (0.081) (0.090) (0.131) (0.136) (0.119) (0.139) (0.163) Mean γ 0.380 0.375 0.374 0.351 0.340 0.338 0.303 0.326 0.310 (0.040) (0.022) (0.023) (0.026) (0.070) (0.072) (0.054) (0.075) (0.079)

  18. • Distance explains a lot (R 2 of 57 %), the rest very little. But: – Women are marginally slower – Older drivers are slower – Black drivers are much slower – More educated drivers are faster – More affluent drivers are faster – Weekdays are slower, peak hours, seasonal patterns, etc • Evidence of a small endogeneity bias • All iv s yield the same answer • Some differences across cities (not sampling) • Some difference across years

  19. Speed index Index: T ime to complete all US trips at average US speed S i = T ime to complete all US trips at city i speed Σ jk x jk exp ( c US − γ US ln x jk ) = Σ jk x jk exp ( c i − γ i ln x jk ) . • Inverse Laspeyres index for the time cost of travel • Reference: all us trips in the same year

  20. Ranking of the 50 largest msa s, slowest at the top 2008 2008 2001 2001 1995 1995 Population Index Rank Index Rank Index Rank rank Miami-Fort Lauderdale, fl 0.88 1 0.88 1 0.91 2 14 Chicago-Gary-Kenosha, il-in-wi 0.91 2 0.93 2 0.90 1 3 Seattle-Tacoma-Bremerton, wa 0.94 3 0.95 4 0.98 8 12 Portland-Salem, or-wa 0.94 4 1.04 19 1.09 28 22 Los Angeles-Riverside-Orange County, ca 0.95 5 0.97 7 1.00 11 2 New York-Northern nj -Long Isl., ny-nj-ct-pa 0.95 6 0.95 5 0.93 3 1 New Orleans, la 0.95 7 0.98 9 1.02 13 37 Pittsburgh, pa 0.96 8 0.98 10 1.02 14 21 Boston-Worcester-Lawrence-Low.-Brock., ma-nh 0.96 9 0.98 11 0.99 9 7 Washington-Baltimore, dc-md-va-wv 0.96 10 0.98 8 0.97 6 4 San Francisco-Oakland-San Jose, ca 0.97 11 1.00 13 1.01 12 5 Sacramento-Yolo, ca 0.97 12 1.03 17 1.22 45 24 Houston-Galveston-Brazoria, tx 0.98 13 1.06 21 1.10 31 10 Tampa-St. Petersburg-Clearwater, fl 0.98 14 1.02 15 1.09 26 20 Orlando, fl 0.99 15 1.02 16 1.04 15 26 Philadelphia-Wilmington-Atl. City, pa-nj-de-md 0.99 16 0.96 6 0.97 5 6 Norfolk-Virginia Beach-Newport News, va-nc 0.99 17 1.13 37 1.07 24 31 Phoenix-Mesa, az 1.00 18 1.04 20 1.10 29 13 Las Vegas, nv-az 1.01 19 0.94 3 1.16 41 29 Cleveland-Akron, oh 1.02 20 1.12 36 0.96 4 16 Atlanta, ga 1.03 21 1.08 23 1.08 25 11 ... Kansas City, mo-ks 1.18 47 1.29 50 1.07 23 25 Greensboro–Winston-Salem–High Point, nc 1.19 48 1.24 47 1.25 48 39 Louisville, ky-in 1.20 49 1.09 30 1.29 49 48 Grand Rapids-Muskegon-Holland, mi 1.23 50 1.27 49 1.12 35 47

  21. Checks • 28 % difference in speed between fastest and slowest • Very high correlation with a Paasche or a Fisher index • Very high or high correlation across indices obtained from variants of the estimations (less so with average inverse speed) • Correlation 2008 / 2001 : 0 . 81 , 2008 / 1995 : 0 . 62 • Correlation with 2008 tti - 0 . 69 and with 2009 tti - 0 . 74

Recommend


More recommend