self avoiding fractional brownian motion the edwards model
play

Self Avoiding Fractional Brownian Motion - the Edwards Model - PowerPoint PPT Presentation

Self Avoiding Fractional Brownian Motion - the Edwards Model Self-avoiding chain molecules Ludwig Streit BiBoS, Univ. Bielefeld and CCM, Univ. da Madeira Taipei, August 12, 2010 L. Streit (Institute) The fBm Edwards Model Taipei, August 12,


  1. Self Avoiding Fractional Brownian Motion - the Edwards Model Self-avoiding chain molecules Ludwig Streit BiBoS, Univ. Bielefeld and CCM, Univ. da Madeira Taipei, August 12, 2010 L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 1 / 26

  2. Polymer Chains Real linear polymer chains under liquid medium as recorded using an atomic force microscope. http://commons.wikimedia.org/wiki/File:Single_Polymer_Chains_AFM.jpg L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 2 / 26

  3. "Brownian" Polymers? Strategy: random paths x ( s ) 0 � s � l L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 3 / 26

  4. "Brownian" Polymers? Strategy: random paths x ( s ) 0 � s � l Focus: avoid crossings , want x ( s ) 6 = x ( t ) if s 6 = t L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 3 / 26

  5. "Brownian" Polymers? Strategy: random paths x ( s ) 0 � s � l Focus: avoid crossings , want x ( s ) 6 = x ( t ) if s 6 = t Brownian motion has many! How to suppress them? L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 3 / 26

  6. The discrete case Background "self-avoiding random walks", intensively studied in discrete mathematics, often used to model polymers. Madras, N.; Slade, G. The Self-Avoiding Walk. Birkhäuser (1996) C. Vanderzande: Lattice Models of Polymers. Cambridge U. Press (1998) . L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 4 / 26

  7. Self-intersection Local Time To control self-intersections of paths consider Z l Z l L = 0 dt δ ( x ( s ) � x ( t ) ) 0 ds Widely studied for Brownian motion paths. For the white noise setting and many references see e.g. M. de Faria, T. Hida, L. Streit, H. Watanabe: "Intersection Local Times as Generalized White Noise Functionals" Acta Appl. Math. 46, 351-362 (1997) L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 5 / 26

  8. The Edwards Strategy S. F. Edwards, The statistical mechanics of polymers with excluded volume. Proc.Roy. Soc. 85, 613-624 (1965). Weakly self-avoiding paths via a "Gibbs factor" to suppress self-intersections: � � Z l Z l G = 1 Z exp � g 0 ds 0 dt δ ( x ( s ) � x ( t ) ) with � � �� Z l Z l Z = E exp � g 0 ds 0 dt δ ( x ( s ) � x ( t ) ) . L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 6 / 26

  9. The Edwards Strategy S. F. Edwards, The statistical mechanics of polymers with excluded volume. Proc.Roy. Soc. 85, 613-624 (1965). Weakly self-avoiding paths via a "Gibbs factor" to suppress self-intersections: � � Z l Z l G = 1 Z exp � g 0 ds 0 dt δ ( x ( s ) � x ( t ) ) with � � �� Z l Z l Z = E exp � g 0 ds 0 dt δ ( x ( s ) � x ( t ) ) . Problem: Z = ? L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 6 / 26

  10. A closer look at self-intersection local times How to make sense of Z l Z l L = 0 ds 0 dt δ ( B ( s ) � B ( t ) ) L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 7 / 26

  11. A closer look at self-intersection local times How to make sense of Z l Z l L = 0 ds 0 dt δ ( B ( s ) � B ( t ) ) Use delta sequences: ( 2 πε ) d / 2 e � j x j 2 1 2 ε , δ ε ( x ) : = ε > 0 , Z T Z t L ε : = dt 0 ds δ ε ( B ( t ) � B ( s )) . (1) 0 L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 7 / 26

  12. Removing the regularization The main problem is the removal of the approximation, that is, ε & 0. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 8 / 26

  13. Removing the regularization The main problem is the removal of the approximation, that is, ε & 0. OK for d = 1 . L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 8 / 26

  14. Removing the regularization The main problem is the removal of the approximation, that is, ε & 0. OK for d = 1 . For d � 2 have ε & 0 E ( L ε ) = ∞ lim L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 8 / 26

  15. Removing the regularization The main problem is the removal of the approximation, that is, ε & 0. OK for d = 1 . For d � 2 have ε & 0 E ( L ε ) = ∞ lim For d = 2 have 2 π ln 1 l E ( L ε ) = ε + o ( ε ) and L 2 convergence after centering: L ε � E ( L ε ) ! L c . (2) as ε tends to zero. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 8 / 26

  16. Removing the regularization The main problem is the removal of the approximation, that is, ε & 0. OK for d = 1 . For d � 2 have ε & 0 E ( L ε ) = ∞ lim For d = 2 have 2 π ln 1 l E ( L ε ) = ε + o ( ε ) and L 2 convergence after centering: L ε � E ( L ε ) ! L c . (2) as ε tends to zero. For d � 3 a further multiplicative renormalization r ( ε ) is required r ( ε ) ( L ε � E ( L ε )) . (3) L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 8 / 26

  17. The case d=2 Now consider exp ( � gL c ) L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 9 / 26

  18. The case d=2 Now consider exp ( � gL c ) Problem: L c is unbounded below, and when L c ! � ∞ . exp ( � gL c ) ! ∞ L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 9 / 26

  19. The case d=2 Now consider exp ( � gL c ) Problem: L c is unbounded below, and when L c ! � ∞ . exp ( � gL c ) ! ∞ Need to show that large values occur only with a very small probability such that the expectation is nevertheless …nite. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 9 / 26

  20. ,A - o a c(n ,c) t1 ts h{ xr L-r z f ZH 0Fl ?1 ;-a Ll \H ?\J iZ'?' 7 \.,J cN; (- Hii rro>" Z': a \J r. ördi rl-{ V|.- v H= \ - r:1 ^ =rr{F \J \I z a ri^ fd Fn \/ Fa c'.j L./ rr F< tr9 ?\) r 7 |-- t9.. r f-l 0c tJ2 ; an

  21. d=2: Varadhan’s Method Show logarithmic lower bound 1 ε > � c ln 1 L c ε Show that the rate of convergence is 2 � ( L c ε � L c ) 2 � � A ε 1 / 2 E Now estimate 3 prob ( L c � � K ) . L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 10 / 26

  22. prob ( L c � � K ) prob ( L c � L c ε + L c = ε � � K ) prob ( L c � L c ε � � K � L c = ε ) � � ε � � K + c ln 1 L c � L c � prob ε Now use the Chebychev inequality to get � � A ε 1 / 2 ε � � K + c ln 1 L c � L c prob � � � 2 ε K � c ln 1 ε Choosing 2 c ln 1 = K ε � � � K ε = exp 2 c the probability for large negative values � � K � prob ( L c � � K ) � 4 A exp 4 c K 2 is exponentially small. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 11 / 26

  23. As a result E ( exp ( � gL c )) < ∞ if g > 0 is su¢ciently small. By a scaling argument this can be extended to all g > 0 . S. R. S. Varadhan: Appendix to " Euclidean quantum …eld theory" by K. Symanzik, in: R. Jost, ed., Local Quantum Theory, Academic Press, New York, p. 285 (1970) E. Nelson in Analysis in Function Space, W. T. Martin and I. Segal, eds. , Cambridge, 1964, p.87. B. Simon: The P( ϕ ) 2 (Euclidean) Quantum Field Theory . Princeton University Press. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 12 / 26

  24. Fractional Brownian Motion Fractional Brownian motion fBm on R d , d � 1, with "Hurst parameter" H 2 ( 0 , 1 ) is a d -dimensional centered Gaussian process B H = f B H t : t � 0 g with covariance function � t 2 H + s 2 H � j t � s j 2 H � s ) = δ ij E ( B H t B H i , j = 1 , . . . , d , s , t � 0 . , 2 H = 1 / 2 is ordinary Brownian motion. F. Biagini, Y. Hu, B. Oksendal: Stochastic Calculus for Fractional Brownian Motion and Applications . Springer, Berlin, 2007.. Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab . 33:948–983, (2005). M. J. Oliveira, J. L. Silva, and L. Streit. Intersection local times of independent fractional Brownian motions as generalized white noise functionals. arXiv:math.PR/1001.0513 Preprint, 2010. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 13 / 26

  25. Fractional Brownian Motion Fractional Brownian motion fBm on R d , d � 1, with "Hurst parameter" H 2 ( 0 , 1 ) is a d -dimensional centered Gaussian process B H = f B H t : t � 0 g with covariance function � t 2 H + s 2 H � j t � s j 2 H � s ) = δ ij E ( B H t B H i , j = 1 , . . . , d , s , t � 0 . , 2 H = 1 / 2 is ordinary Brownian motion. For larger resp. smaller H the paths are smoother resp. curlier than those of BM, and continuous. F. Biagini, Y. Hu, B. Oksendal: Stochastic Calculus for Fractional Brownian Motion and Applications . Springer, Berlin, 2007.. Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab . 33:948–983, (2005). M. J. Oliveira, J. L. Silva, and L. Streit. Intersection local times of independent fractional Brownian motions as generalized white noise functionals. arXiv:math.PR/1001.0513 Preprint, 2010. L. Streit (Institute) The fBm Edwards Model Taipei, August 12, 2010 13 / 26

Recommend


More recommend