section5 4
play

Section5.4 Properties of Logarithmic Functions - PowerPoint PPT Presentation

Section5.4 Properties of Logarithmic Functions PropertiesofLogarithms Formulas Basic Properties: log a 1 = 0 Formulas Basic Properties: log a 1 = 0 log a a = 1 Formulas Basic Properties: log a 1 = 0 log a a = 1 log a a x = x Formulas Basic


  1. Section5.4 Properties of Logarithmic Functions

  2. PropertiesofLogarithms

  3. Formulas Basic Properties: log a 1 = 0

  4. Formulas Basic Properties: log a 1 = 0 log a a = 1

  5. Formulas Basic Properties: log a 1 = 0 log a a = 1 log a a x = x

  6. Formulas Basic Properties: log a 1 = 0 log a a = 1 log a a x = x a log a x = x

  7. Formulas The Product Rule: Basic Properties: log a ( xy ) = log a x + log a y log a 1 = 0 log a a = 1 log a a x = x a log a x = x

  8. Formulas The Product Rule: Basic Properties: log a ( xy ) = log a x + log a y log a 1 = 0 The Quotient Rule: log a a = 1 � � log a = log a x − log a y x log a a x = x y a log a x = x

  9. Formulas The Product Rule: Basic Properties: log a ( xy ) = log a x + log a y log a 1 = 0 The Quotient Rule: log a a = 1 � � log a = log a x − log a y x log a a x = x y The Power Rule: a log a x = x log a ( x z ) = z log a x

  10. Examples Calculate the following: 1. log 4 64

  11. Examples Calculate the following: 1. log 4 64 3

  12. Examples Calculate the following: 1. log 4 64 3 2. 10 log 51

  13. Examples Calculate the following: 1. log 4 64 3 2. 10 log 51 51

  14. Examples Calculate the following: √ 3. log 3 27 1. log 4 64 3 2. 10 log 51 51

  15. Examples Calculate the following: √ 3. log 3 27 1. log 4 64 3 3 2 2. 10 log 51 51

  16. Examples Calculate the following: √ 3. log 3 27 1. log 4 64 3 3 2 2. 10 log 51 4. ln e 200 51

  17. Examples Calculate the following: √ 3. log 3 27 1. log 4 64 3 3 2 2. 10 log 51 4. ln e 200 51 200

  18. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10

  19. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z

  20. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4

  21. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4 1 3 log 4 x + 1 3 log 4 ( x − 2)

  22. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4 1 3 log 4 x + 1 3 log 4 ( x − 2) � 3 x 7. log 5 y

  23. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4 1 3 log 4 x + 1 3 log 4 ( x − 2) � 3 x 7. log 5 y 1 2 log 5 3 + 1 2 log 5 x − 1 2 log 5 y

  24. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4 1 3 log 4 x + 1 3 log 4 ( x − 2) � 3 x 7. log 5 y 1 2 log 5 3 + 1 2 log 5 x − 1 2 log 5 y 8. Given that log a 2 ≈ 0 . 301 and log a 7 ≈ 0 . 845, find log a 28.

  25. Examples (continued) Use the Properties of Logarithms to expand the expression into sums and differences of logarithms: 2 x 4 5. log 2 y 2 z 10 1 + 4 log 2 x − 2 log 2 y − 10 log 2 z √ 3 x 2 − 2 x 6. log 4 3 log 4 x + 1 1 3 log 4 ( x − 2) � 3 x 7. log 5 y 1 2 log 5 3 + 1 2 log 5 x − 1 2 log 5 y 8. Given that log a 2 ≈ 0 . 301 and log a 7 ≈ 0 . 845, find log a 28. 1.447

  26. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1)

  27. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1) x 4 ln 9 √ x − 1

  28. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1) x 4 ln 9 √ x − 1 10. log 4900 − 2 log 7

  29. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1) x 4 ln 9 √ x − 1 10. log 4900 − 2 log 7 2

  30. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1) x 4 ln 9 √ x − 1 10. log 4900 − 2 log 7 2 11. 4 log 5 ( x − 4) + log 5 ( x − 1) − 3 log 5 ( x 2 − 5 x + 4)

  31. Examples (continued) Use the Properties of Logarithms to combine the expression into a single logarithm: 9. − 2 ln 3 + 4 ln x − 1 2 ln( x − 1) x 4 ln 9 √ x − 1 10. log 4900 − 2 log 7 2 11. 4 log 5 ( x − 4) + log 5 ( x − 1) − 3 log 5 ( x 2 − 5 x + 4) x − 4 log 5 ( x − 1) 2

Recommend


More recommend