SEARHCING FOR NEW PHYSICS WITH THE HIGGS DANIEL STOLARSKI DS, R. Vega-Morales, Phys.Rev.D.86, 117504 (2012) [arXiv:1208.4840], Yi Chen, DS, R. Vega-Morales, [arXiv:1505.01168], B. Batell, M. McCullough, DS, C. B. Verhaaren, [arXiv:1508.01208], and work in progress. GGI SEPTEMBER 11, 2015
A NEW PARTICLE July 2012: h → 4 e/ 4 µ/ 2 e 2 µ h → γγ DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 2
IS IT THE HIGGS? Consistent with the Higgs, but could also be something else. Neutral pion decays to two photons and four electrons, but its much more boring. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 3
WARM UP EXERCISE Assume parity even scalar: Z s Z Z h OR s Z µ ν Z µ ν Z Z s h Z µ Z µ γ s Z µ ν F µ ν DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 4
KINEMATIC DISTRIBUTIONS h → 4 e/ 4 µ/ 2 e 2 µ Study : Each event is characterized by five different variables. ˆ x CM ⇡ − � 2 − � 1 ` 2 ( p 3 ) ` 1 ( p 1 ) Z 2 ( k 2 ) Z 1 ( k 1 ) ✓ 2 ✓ 1 ˆ z CM ¯ ¯ ` 1 ( p 2 ) ` 2 ( p 4 ) Compare to . h → γγ DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 5
KINEMATIC DISTRIBUTIONS 0.7 Distributions encode 0.6 information about tensor 0.5 0.4 1 d � structure. dcos Θ � 0.3 a h a s 0.2 a Z Γ 0.1 ˆ x CM 0.0 � 1.0 � 0.5 0.0 0.5 1.0 cos Θ ⇡ − � 2 − � 1 0.08 0.08 ` 2 ( p 3 ) ` 1 ( p 1 ) a a h Z 2 ( k 2 ) Z 1 ( k 1 ) ✓ 2 ✓ 1 0.06 0.06 a ˆ z CM a s a a Z Γ ¯ ¯ ` 1 ( p 2 ) 1 d � ` 2 ( p 4 ) 0.04 0.04 dM 2 � 0.02 0.02 DS, R. Vega-Morales, Phys.Rev.D.86, 117504 (2012) [arXiv:1208.4840]. 0.00 0.00 20 30 40 50 60 20 30 40 50 60 M M 2 DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 6
MATRIX ELEMENT METHOD For a given event, can compute probability of h → 4 ` that even given underlying theory. |M ( ~ � ) | 2 P ( ~ � | a i ) = d ~ � |M ( ~ R � ) | 2 Phase space Underlying point model DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 7
MATRIX ELEMENT METHOD For a given event, can compute probability of h → 4 ` that even given underlying theory. |M ( ~ � ) | 2 P ( ~ � | a i ) = d ~ � |M ( ~ R � ) | 2 For N events, can compute likelihood for different underlying theories. N P ( ~ Y L ( a i ) = � j | a i ) j =1 DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 8
LIKELIHOOD DISTRIBUTION Can do pseudo- Example for 50 events: experiments to see 0.06 � separation power of � 0.05 N events. 0.04 a s a h 0.03 0.02 0.01 0.00 � 40 � 20 0 20 40 0.06 � theory Λ = 2 log[ L ( a 1 ) / L ( a 2 )] . 0.05 MC 0.04 MC DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 9 0.03 0.02 0.01 0.00 20 30 40 50 60
KINEMATIC DISTRIBUTIONS Get better discrimination with more events. N 3.0 3.0 99 � � 99 � 2.5 2.5 95 � 95 � 2.0 2.0 Σ Σ 1.5 1.5 a a 1.0 1.0 a h vs. a Z Γ a h vs. a s 0.5 0.5 0.0 0.0 20 40 60 80 100 120 140 10 20 30 40 50 40 20 0 20 40 N N 3.0 Today’s data 99 2.5 95 2.0 1.5 DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 10 1.0 a 0.5 0.0 10 20 30 40 50
DATA Evidence for -1 -1 CMS preliminary s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 19.6 fb Pseudoexperiments 0.16 + the Higgs: 0 = a h + 0 = a s 0.14 h CMS data 0.12 0.1 0.08 0.06 0.04 0.02 0 -30 -20 -10 0 10 20 30 -2 ln(L / L ) × + 0 + 0 h DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 11
RATE MEASUREMENTS -1 -1 19.7 fb (8 TeV) + 5.1 fb (7 TeV) Combined m = 125 GeV CMS = 1.00 0.14 µ ± H H (untagged) → γ γ p = 0.84 H (VBF tag) → γ γ SM H (VH tag) → γ γ H (ttH tag) → γ γ H ZZ (0/1 jet) → H ZZ (2 jets) → H WW (0/1 jet) → H WW (VBF tag) → H WW (VH tag) → H WW (ttH tag) → H (0/1 jet) → τ τ H (VBF tag) → τ τ H (VH tag) → τ τ H (ttH tag) → τ τ H bb (VH tag) → H bb (ttH tag) → -4 -2 0 2 4 6 Best fit / σ σ SM DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 12
BIG PICTURE At discovery, rate measurements pointed to 4 lepton coming from tree level and 2 photon at one loop. Could imagine a tuned model: c W H † H W aµ ν W a c B H † H B µ ν B µ ν µ ν Worthwhile to test SM and rule out all other logical possibilities. Techniques become extremely important if there is an anomaly. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 13
LOOP PROCESSES Kinematic distributions can reveal more than just rates measurements can. Put this to use with loop processes. Z/ γ Z/ γ W h h h Z/ γ Z/ γ DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 14
TOP YUKAWA Start with just top, keep all other couplings fixed. Z/ γ y γ 5 � h ¯ � h t y t + i ˜ t Z/ γ Can probe CP nature of top Yukawa coupling. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 15
EDM BOUNDS Can place strong bounds on CP violation from EDMs. k u,d,e = 1 k u,d,e = 1 Higgs prod. Higgs 0.0004 0.4 H LHC 3000 fb - 1 L neutr. Hg EDM EDM 0.0002 0.2 el. EDM neutr. EDM el. EDM 0.0000 0.0 t t é k é k SM SM - 0.0002 - 0.2 - 0.4 - 0.0004 0.90 0.95 1.00 1.05 1.10 - 1.0 - 0.5 0.0 0.5 1.0 k t k t Brod, Haisch, Zupan, [arXiv:1310.1385]. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 16
EDM BOUNDS Depend on knowing Higgs coupling to first generation. k u,d,e = 0 k u,d,e = 0 0.010 neutr. EDM Higgs 1.0 H LHC 3000 fb - 1 L 0.005 0.5 Higgs prod. neutr. EDM 0.0 0.000 t t é k k SM é SM - 0.5 - 0.005 - 1.0 - 0.010 0.90 0.95 1.00 1.05 1.10 - 1.0 - 0.5 0.0 0.5 1.0 k t k t Brod, Haisch, Zupan, [arXiv:1310.1385]. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 17
SENSITIVITY 14 TeV -1 L (fb ) × ∈ 3 2 10 10 Measurement gets ) t ~ y ( σ ) or better with more y (float ZZ couplings) t t (y y (fix ZZ couplings) events. σ t 10 ~ y (float ZZ couplings) t ~ y (fix ZZ couplings) t Better sensitivity to pseudo-scalar coupling. 1 Need large number of events. 3 2 4 10 10 10 Chen, DS, Vega-Morales, [arXiv:1505.01168]. Current time is Thu Apr 30 09:36:51 2015 N Working dir /Users/yichen/PhysicsWorkspace/HiggsProperties/MiscellaneousPlots/14156_LoopPlots Host N/A S This is the scaled version! DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 18
EXPERIMENTAL CUTS (GeV) 0.022 60 CMS cuts optimized for 0.02 0.018 2 50 M discovery: 0.016 0.014 40 0.012 M 1 > 40 , M 2 > 12 , M `` > 4 0.01 30 0.008 20 0.006 0.004 Want to gain sensitivity 10 0.002 0 20 40 60 80 100 120 to NLO effects. M (GeV) 1 (GeV) 60 γ 0.01 2 50 M 0.008 40 h 0.006 30 0.004 20 0.002 10 γ 0 20 40 60 80 100 120 DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI M (GeV) 19 1
EXPERIMENTAL CUTS CMS cuts optimized for a.u. 10 Total Madgraph discovery: 1 ZZ 4l Z 4l → → Z 4l γ → M 1 > 40 , M 2 > 12 , M `` > 4 -1 10 4l Example signal γ γ → -2 10 Modified “Relaxed - Υ ” -3 10 M `` > 4 , -4 10 M `` (OSSF) 62 (8 . 8 , 10 . 8) -5 10 -6 10 S/B gets worse, but 100 150 200 250 300 M sensitivity improves. 4l Chen, Harnik, Vega-Morales, [arXiv:1503.05855]. DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 20
SENSITIVITY 800 events ~ 300 fb -1 t ~ y Golden channel (Relaxed - , Signal-only) Υ 15 Golden channel (Relaxed - ) Υ Golden channel (CMS - tight) Non-trivial constraint. h direct search ( 1 ) → γ γ ± σ h Z direct search ( 1 ) → γ ± σ 10 t t h direct search ( 1 ) ± σ Standard model 5 0 -5 -10 -10 -5 0 5 10 15 y Current time is Thu Apr 30 09:38:37 2015 t Working dir /Users/yichen/PhysicsWorkspace/HiggsProperties/MiscellaneousPlots/14156_LoopPlots Host N/A DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 21
HIGH LUMINOSITY 8,000 events ~ t ~ y 5 Golden channel (Relaxed - , Signal-only) Υ 3,000 fb -1 Golden channel (Relaxed - ) Υ Golden channel (CMS - tight) 4 h direct search ( 1 ) → γ γ ± σ h Z direct search ( 1 ) → γ ± σ 3 Better constraint. t t h direct search ( 1 ) ± σ Standard model 2 If there is anomaly, 1 will help characterize. 0 -1 -2 -3 -3 -2 -1 0 1 2 3 4 5 y Current time is Thu Apr 30 09:38:38 2015 t Working dir /Users/yichen/PhysicsWorkspace/HiggsProperties/MiscellaneousPlots/14156_LoopPlots Host N/A DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 22
100 TEV? 20,000 events ~ t ~ y 5 Golden channel (Relaxed - , Signal-only) Υ 3,000 fb -1 @ 100 TeV Golden channel (Relaxed - ) Υ Golden channel (CMS - tight) 4 h direct search ( 1 ) → γ γ ± σ h Z direct search ( 1 ) → γ ± σ 3 Further improved. t t h direct search ( 1 ) ± σ Standard model 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 4 5 y Current time is Thu Apr 30 09:38:39 2015 t Working dir /Users/yichen/PhysicsWorkspace/HiggsProperties/MiscellaneousPlots/14156_LoopPlots Host N/A DANIEL STOLARSKI SEPTEMBER 11, 2015 GGI 23
Recommend
More recommend