higgs physics in the sm and in the mssm
play

Higgs Physics (in the SM and in the MSSM) Abdelhak DJOUADI (LPT - PowerPoint PPT Presentation

Higgs Physics (in the SM and in the MSSM) Abdelhak DJOUADI (LPT CNRS & U. Paris-Sud) The Higgs in the Standard Model Higgs decays Higgs production at hadron colliders Implications of the discovery for the SM The Higgs


  1. Higgs Physics (in the SM and in the MSSM) Abdelhak DJOUADI (LPT CNRS & U. Paris-Sud) • The Higgs in the Standard Model • Higgs decays • Higgs production at hadron colliders • Implications of the discovery for the SM • The Higgs beyond the Standard Model • The MSSM Higgs sector • Implications of the discovery for the MSSM • What next? GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.1/74

  2. 1. The Higgs in the Standard Model SM is based on the gauge symmetry G SM ≡ SU ( 3 ) C × SU ( 2 ) L × U ( 1 ) Y • SU ( 2 ) L × U ( 1 ) Y describes the electromagnetic+weak=EW interaction: – between the three families of quarks and leptons: f L / R = 1 2 ( 1 ∓ γ 5 ) f I 3L , 3R � ν e L , R = e − = ± 1 � R , Q = ( u 2 , 0 ⇒ L = d ) L , u R , d R e − f f ⇒ Y L = − 1 , Y R = − 2 , Y Q = 1 3 , Y u R = 4 3 , Y d R = − 2 Y f = 2Q f − 2I 3 3 Same holds for the two other generations: ( µ, ν µ , c , s ) and ( τ, ν τ , t , b ) . There is no ν R field (and neutrinos are thus exactly and stay massless). – mediated by the W i µ (isospin) and B µ (hypercharge) gauge bosons corresping to the 3 generators (Pauli matrices) of SU(2) and are massless T a = 1 2 τ a ; [ T a , T b ] = i ǫ abc T c and [ Y , Y ] = 0 . Lagrangian simple: with fields strengths and covariant derivatives as QED W a µν = ∂ µ W a ν − ∂ ν W a µ + g 2 ǫ abc W b µ W c ν , B µν = ∂ µ B ν − ∂ ν B µ ψ , T a = 1 � ∂ µ − igT a W a µ − ig ′ Y � 2 τ a D µ ψ = 2 B µ 4 B µν B µν + ¯ F Li iD µ γ µ F Li + ¯ f Ri iD µ γ µ f R i L EW = − 1 µν W µν a − 1 4 W a GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.2/74

  3. 1. The Higgs in the Standard Model But if gauge boson and fermion masses are put by hand in L EW V V µ V µ and/or m f ¯ 1 2 M 2 ff terms: breaking of gauge symmetry. This statement can be visualized by taking the example of QED where the photon is massless because of the local U ( 1 ) Q local symmetry: Ψ ( x ) → Ψ ′ ( x )= e ie α ( x ) Ψ ( x ) , A µ ( x ) → A ′ µ ( x )= A µ ( x ) − 1 e ∂ µ α ( x ) • For the photon (or B field) mass for instance we would have: A A µ A µ → 1 1 A ( A µ − 1 e ∂ µ α )( A µ − 1 e ∂ µ α ) � = 1 A A µ A µ 2 M 2 2 M 2 2 M 2 and thus, gauge invariance is violated with a photon mass. • For the fermion masses, we would have e.g. for the electron: � � 1 2 ( 1 − γ 5 ) + 1 m e ¯ ee = m e ¯ e 2 ( 1 + γ 5 ) e = m e ( ¯ e R e L + ¯ e L e R ) manifestly non–invariant under SU(2) isospin symmetry transformations as e L is in an SU(2) doublet while e R is in an SU(2) singlet. We need a less “brutal” way to generate particle masses in the SM: ⇒ The Brout-Englert-Higgs mechanism ⇒ the Higgs particle H. GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.3/74

  4. 1. The Higgs in the Standard Model Brout-Englert-Higgs: spontaneous electroweak symmetry breaking ⇒ � � φ + introduce a new doublet of complex scalar fields: Φ = , Y Φ =+ 1 φ 0 with a Lagrangian density that is invariant under SU ( 2 ) L × U ( 1 ) Y L S = ( D µ Φ ) † ( D µ Φ ) − µ 2 Φ † Φ − λ ( Φ † Φ ) 2 µ 2 > 0 : 4 scalar particles.. µ 2 < 0 : Φ develops a vev: V( � ) V( � ) � 0 | Φ | 0 � = ( 0 2 ) √ v / 1 with ≡ v = ( − µ 2 /λ ) � � 2 > > 0 0 2 2 + v � > 0 � < 0 = 246 GeV – symmetric minimum: unstable – true vacuum: degenerate ⇒ to obtain the physical states, write L S with the true vacuum (diagonalised fields/interactions). GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.4/74

  5. 1. The Higgs in the Standard Model • Write Φ in terms of four fields θ 1 , 2 , 3 ( x ) and H(x) at 1st order: Φ ( x ) = e i θ a ( x ) τ a ( x ) / v 2 ( θ 2 + i θ 1 1 2 ( 0 1 v + H ( x ) ) ≃ v + H − i θ 3 ) √ √ • Make a gauge transformation on Φ to go to the unitary gauge: Φ ( x ) → e − i θ a ( x ) τ a ( x ) Φ ( x ) = 1 2 ( 0 v + H ( x ) ) √ • Then fully develop the term | D µ Φ ) | 2 of the Lagrangian L S : | D µ Φ ) | 2 = � 2 µ − i g 2 � τ a � �� 2 W a � ∂ µ − ig 1 2 B µ Φ 2 � �� � � � 0 − ig2 ∂ µ − i 2 ( g 2 W 3 2 ( W 1 µ − iW 2 µ + g 1 B µ ) µ ) � � = 1 � � v + H − ig2 ∂ µ + i 2 2 ( g 2 W 3 µ − g 1 B µ ) 2 ( W 1 µ + iW 2 µ ) � � = 1 2 ( ∂ µ H ) 2 + 1 µ | 2 + 1 8 g 2 2 ( v + H ) 2 | W 1 µ + iW 2 8 ( v + H ) 2 | g 2 W 3 µ − g 1 B µ | 2 • Define the new fields W ± µ and Z µ [ A µ is the orthogonal of Z µ ]: g 2 W 3 g 2 W 3 W ± = µ − g 1 B µ µ + g 1 B µ 1 √ √ 2 ( W 1 µ ∓ W 2 µ ) , Z µ = , A µ = √ g 2 2 + g 2 g 2 2 + g 2 1 1 with sin 2 θ W ≡ g 2 / � g 2 2 + g 2 1 = e / g 2 GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.5/74

  6. 1. The Higgs in the Standard Model • And pick up the terms which are bilinear in the fields W ± , Z , A : µ W − µ + 1 Z Z µ Z µ + 1 W W + A A µ A µ M 2 2 M 2 2 M 2 ⇒ 3 degrees of freedom for W + L , W − L , Z L and thus M W ± , M Z : � M W = 1 2 vg 2 , M Z = 1 g 2 2 + g 2 2 v 1 , M A = 0 , √ 2G F ) 1 / 2 ∼ 246 GeV . with the value of the vev given by: v = 1 / ( ⇒ the photon stays massless and U ( 1 ) QED is preserved as it should. • For fermion masses, use same doublet field Φ and its conjugate field ˜ Φ = i τ 2 Φ ∗ and introduce L Yuk which is invariant under SU(2)xU(1): u , ¯ u , ¯ d ) L ˜ L Yuk = − f e ( ¯ e , ¯ ν ) L Φe R − f d ( ¯ d ) L Φd R − f u ( ¯ Φu R + · · · = − 1 v + H ) e R · · · = − 1 e L )( 0 2 f e ( ¯ ν e , ¯ 2 ( v + H ) ¯ e L e R · · · √ √ 2 , m d = f d v ⇒ m e = f e v 2 , m u = f u v √ √ √ 2 With same Φ , we have generated gauge boson and fermion masses, while preserving SU(2)xU(1) gauge symmetry (which is now hidden)! What about the residual degree of freedom? GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.6/74

  7. 1. The Higgs in the Standard Model It will correspond to the physical spin–zero scalar Higgs particle, H. 2 ( ∂ µ H ) 2 , comes from | D µ Φ ) | 2 term. The kinetic part of H field, 1 Mass and self-interaction part from V ( Φ ) = µ 2 Φ † Φ + λ ( Φ † Φ ) 2 : V = µ 2 v + H ) + λ 2 ( 0 , v + H )( 0 2 | ( 0 , v + H )( 0 v + H ) | 2 Doing the exercise you find that the Lagrangian containing H is, 2 ( ∂ µ H ) 2 − λ v 2 H 2 − λ v H 3 − λ 2 ( ∂ µ H )( ∂ µ H ) − V = 1 L H = 1 4 H 4 H = 2 λ v 2 = − 2 µ 2 . The Higgs boson mass is given by: M 2 The Higgs triple and quartic self–interaction vertices are: g H 3 = 3i M 2 H / v , g H 4 = 3iM 2 H / v 2 What about the Higgs boson couplings to gauge bosons and fermions? They were almost derived previously, when we calculated the masses: V ( 1 + H / v ) 2 , L m f ∼ − m f ( 1 + H / v ) L M V ∼ M 2 ⇒ g Hff = im f / v , g HVV = − 2iM 2 V / v , g HHVV = − 2iM 2 V / v 2 Since v is known, the only free parameter in the SM is M H or λ . GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.7/74

  8. 1. The Higgs in the Standard Model Constraints on M H from pre–LHC experiments: LEP, Tevatron... Indirect Higgs boson searches: Direct searches at colliders: H looked for in e + e − → ZH H contributes to RC to W/Z masses: e + Z H W/Z W/Z Z ∗ e − H Fit the EW precision measurements: M H > 114 . 4 GeV @95% CL we obtain M H = 92 + 34 − 26 GeV, or 1 CL s 6 LEP Theory uncertainty -1 10 ∆α had = ∆α (5) 5 0.02761 ± 0.00036 -2 0.02747 ± 0.00012 10 incl. low Q 2 data 4 -3 Observed 10 ∆χ 2 3 Expected for background -4 10 2 -5 114.4 115.3 10 1 -6 Excluded Preliminary 10 0 100 102 104 106 108 110 112 114 116 118 120 20 100 400 M H (GeV) m H [ GeV ] M H < ∼ 160 GeV at 95% CL Tevatron M H � = 160 − 175 GeV GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.8/74

  9. 1. The Higgs in the Standard Model Scattering of massive gauge bosons V L V L → V L V L at high-energy W + W + H H W − W − Because w interactions increase with energy ( q µ terms in V propagator), W ⇒ σ ( w + w − → w + w − ) ∝ s : ⇒ unitarity violation possible! s ≫ M 2 Decomposition into partial waves and choose J=0 for s ≫ M 2 W : � � �� M 2 M 2 M 2 s a 0 = − 1 + H + s log 1 + H H H s − M 2 M 2 8 π v 2 H For unitarity to be fullfiled, we need the condition | Re( a 0 ) | < 1 / 2 . s ≫ M 2 M 2 • At high energies, s ≫ M 2 H , M 2 H W , we have: a 0 − → − H 8 π v 2 unitarity ⇒ M H < ∼ 870 GeV ( M H < ∼ 710 GeV) s ≪ M 2 s H • For a very heavy or no Higgs boson, we have: a 0 − → − 32 π v 2 unitarity ⇒ √ s < ∼ 1 . 7 TeV ( √ s < ∼ 1 . 2 TeV) Otherwise (strong?) New Physics should appear to restore unitarity. GGI Firenze, 1–2/10/2014 Higgs Physics – Abdelhak Djouadi – p.9/74

Recommend


More recommend