Probing super light neutral Higgs boson at the LHC in CP violating MSSM Higgs sector Dilip Kumar Ghosh Department of Theoretical Physics Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road, Kolkata, India Tohoku University,Sendai, Japan 1-2 September, 2010
Plan • CP violating ( � CP) MSSM Higgs sector • General feature of the phenomenology of the CP violating ( � CP) MSSM Higgs sector • Study of ultra light Higgs boson ( m H ≤ 60 GeV) at LHC in Four possible scenarios • Summary Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
CP violation in Higgs sector • CP violation arises naturally in the three generation SM (Phase in the CKM matrix) • The CP violation has been first measured in neutral K -meson decays. [J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay , Phys. Rev. Lett. 13, 138 (1964)] • CP non-conservation provides a key ingredient for cosmological baryogenesis • It is possible to have CP violation in Multi-Higgs models • MSSM contains an extended Higgs sector : may realize CP violation Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
General frame work • Higgs potential of the MSSM is invariant under CP at the tree level • Two CP-even neutral Higgs bosons : h 0 , H 0 ( M H 0 > M h 0 ) • One CP-odd neutral Higgs boson : A 0 • One charged Higgs boson : H ± • M A , tan β, µ and A t,b control the MSSM Higgs spectrum • The tree level CP invariance of the MSSM Higgs potential may be violated sizeably by loop effects involving soft CP-violating trilinear couplings A t,b [ A. Pilaftsis, PRD58,096010 (1998) and PLB435,88 (1998)] Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
CP violation in MSSM • After radiative corrections to the tree level Higgs potential: CP violation induced through loop effects via 3 generation sfermion and gaugino mass parameters • From the one loop effective potential Higgs boson mass matrix is calculated [J.Ellis et al’90, Y.Okada et al ’90, E.Haber et al’90,..M.Carena et al’95...A.Demir’99, A.Pilaftsis et al’99... S.Y.Choi et al’99] ! M 2 M 2 M 2 S SP N = M 2 M 2 P S P • M 2 S , M 2 P and M 2 SP denote the 2 × 2 matrices of the scalar, pseudoscalar and scalar-pseudoscalar squared mass terms of the neutral Higgs bosons. � m 4 � � � 1 , | A t | 2 | µ | 2 | µ || A t | , | µ || A t | M 2 t P S ≃ O sin φ CP , 32 π 2 M 2 M 2 tan βM 2 M 2 v 2 S S S S • M S is stop mass average, φ CP = Arg ( A t,µ ) Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
CP violation in MSSM Higgs sector • In CP conserving MSSM: M SP = 0 : 2 CP-even h, H and one CP-odd A. • Diag( M 2 H 1 , M 2 H 2 , M 2 H 3 ) = O T M 2 N O , with M H 1 < M H 2 < M H 3 • After diagonalization the Physical mass eigenstates are mixed states of CP, H 1 , 2 , 3 have undefined CP properties. • To get sizeable CP violation, large | µ | , | A t,b | and large sin φ CP are needed • m A no longer a physical parameter, but the m H ± can be used as a physical parameter • Elements of matrix O are similar to cos α and sin α in the CP-conserving case. But 3 rd row and column are zero in the non-diagonal elements in such a case • Large m H ± implies H 1 → H sm Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
The interaction between Higgs and gauge bosons 3 � 1 µ W − ,µ + g H i V V [ H i W + H i Z µ Z µ ] L H i V V = gm W 2 c 2 W i =1 3 � g ↔ ∂ µ H j ) Z µ L H i H j Z = g H i H j Z ( H i 2 c W j>i =1 3 � g ↔ ∂ µ H − ) W + ,µ L HH ∓ W ± = g H i H − W + ( H i 2 c W i =1 g H i V V = O 1 i cos β + O 2 i sin β, g H i H j Z = O 3 i (cos βO 2 j − sin βO 1 j ) − ( i ↔ j ) g H i H + W − = O 2 i cos β − O 1 i sin β + iO 3 i g H k V V = ǫ ijk g H i H j Z • We have the following Sum rules: 3 g 2 X HiV V = 1 , i =1 Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Implications of CP violating phases on Higgs searches The CPX Scenario ( Carena, Ellis, Pilaftsis & Wagner, PLB495(2000) 155 ) • Designed to showcase the effects of CP violation in the MSSM Higgs sector M ˜ t = M ˜ b = M ˜ τ = M SUSY µ = 4 M SUSY , | A t,b,τ | = 2 M SUSY , | M ˜ g | = 1TeV • Allows the following parameters to vary: tan β, M H ± , M SUSY Φ A t , Φ A b , Φ A τ , Φ ˜ g , Φ µ • The spectrum is generated by CPSUPERH code [J. S. Lee etal, Comput.Phys.Commun. 156,283(2004), hep-ph/0307377] Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Implications of CP violating phases on Higgs searches 140 M H1 , M H2 [ GeV ] 130 120 110 100 90 • ( a ) M H 1 , M H 2 and ( b ) g 2 H i ZZ as functions of 80 CPX scenario Arg( A t ) , in the CPX scenario for M SUSY = 1 70 60 TeV and for the following choices of M SUSY = 0.5 TeV 50 ( M H ± , tan β ) : (160 GeV, 4)(solid lines), 40 0 20 40 60 80 100 120 (150 GeV, 5) (dashed lines) and (140 GeV, arg (A t ) = arg (A b ) [ deg ] (a) 6) (dotted lines) H3ZZ 1 , g 2 g 2 H2ZZ , g 2 H3ZZ H1ZZ g 2 g 2 -1 H3ZZ 10 g 2 H1ZZ g 2 H2ZZ -2 10 0 20 40 60 80 100 120 arg (A t ) = arg (A b ) [ deg ] (b) Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Implications of CP violating phases on Higgs searches • In CPC MSSM, we have access only two neutral Higgses h, H in Higgsstrahlung /WW fusion process • In CPV MSSM, the three neutral Higgs mass eigenstates H i (i=1,2,3) do not have well defined CP quantum numbers. • Each of them can be produced in the Higgs-Strahlung process: ( e + e − → ZH i ) and/or in the WW fusion ( e + e − → H i ν e ¯ ν e ) • Also in pair ( e + e − → H i H j ( i � = j )) • The relative rates depend of the choice of the parameters describing the CP-odd/even mising. [A.Akeroyd & A. Arhrib, PRD64,095018 (2001)] Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Higgs production in CP violating MSSM • We studied WH i and ZH i , ( i = 1 , 2 , 3) pair production at Tevatron ( p ¯ p ) Run II and LHC ( pp ) Collider. [Arhrib,Ghosh & Kong,PLB’2002] • Our parameters are fixed as: Set A: M Q = � � M t = � M b = 1TeV , | µ | = 4TeV , | A t | = | A b | = 2TeV , Arg( A t ) = Arg( A b ) , tan β = 6 Set B: M Q = � � M t = � M b = 0 . 5TeV , | µ | = 2TeV , | A t | = | A b | = 2TeV , Arg( A t ) = Arg( A b ) , tan β = 15 • Interested in M H ± < ∼ 300 GeV M H ± > 300 is the decoupling scenario and H 1 is SM like V V H 1 = 1 , V V H 2 = V V H 3 = 0 Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Higgs production in CP violating MSSM 150 200 H 3 H 3 Higgs Mass (GeV) 130 180 H 2 H 2 110 160 90 140 H 1 H 1 70 (d) 120 (a) 50 100 1 • Tevatron Run II energy. M H ± = 150 (left ZH 1 ZH 1 pannel) and 200 GeV (right pannel). Other 0.01 ZH 2 ZH 3 σ (pb) ZH 2 MSSM parameters correspond to set A . ZH 3 0.0001 (e) (b) 1e-06 1 WH 1 WH 2 WH 3 0.01 σ (pb) WH 2 WH 3 WH 1 0.0001 (f) (c) 1e-06 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Φ CP (degree) Φ CP (degree) Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Higgs production in CP violating MSSM 150 200 H 3 H 3 Higgs Mass (GeV) 130 180 H 2 H 2 110 160 90 140 H 1 H 1 70 (d) 120 (a) 50 100 10 • LHC energy. M H ± = 150 (left pannel) and ZH 1 ZH 1 1 ZH 2 200 GeV (right pannel). Other MSSM ZH 3 ZH 2 0.01 σ (pb) ZH 3 parameters correspond to set A . 0.0001 (e) (b) 1e-06 10 WH 1 WH 1 1 WH 2 WH 3 WH 2 0.01 σ (pb) WH 3 0.0001 (c) (f) 1e-06 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Φ CP (degree) Φ CP (degree) Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Higgs search in CP violating MSSM Higgs sector LEP(95)/TeV(3 σ )/LHC(5 σ ) for CPX 0.5 20 40 60 80 100 120 20 40 60 80 100 120 40 40 • M. Carena etal. [NPB659,145 (2003)] 30 30 looked for several channels for Higgs boson 20 20 H i searches at hadron colliders 10 10 • 45 ◦ line: Tevatron: W/ZH i ( → b ¯ b ) . 5 5 90 0 60 0 • 135 ◦ line: LHC: gg H i → → tan β 2 2 γγ ( 100 fb − 1 ) , 40 40 30 30 tH i ( → b ¯ b )( 100 fb − 1 ) , t ¯ 20 20 W W/ZZH i ( → τ + τ − )( 100 fb − 1 ) . 10 10 • dark grey → LEP exclusion. 5 5 • Gaps at M H 1 ≤ 50 GeV for 90 ◦ and 60 ◦ 30 0 0 0 2 2 20 40 60 80 100 120 20 40 60 80 100 120 M H1 (GeV) Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
LEP-2 exclusion • Exclusions, at 95% CL(light-green) and the 99 . 7% CL(dark-green) (b) tan β • Two main channels LEP studied : ( a ) Excluded e + e − → H 1 Z ( H 2 Z ) and ( b ) e + e − → H 1 H 2 by LEP 10 10 • For low M H 1 , LEP looked at e + e − H 1 H 2 → H 1 ( H 1 H 1 ) → 6 b jets ,and 6 τ leptons 1 1 Theoretically CPX Inaccessible 0 20 40 60 80 100 120 140 2 ) m H1 (GeV/c [Eur.Phys.J.C47, 547 (2006)] Tohoku University, Sendai, Japan, 1-2 September, 2010 Dilip Kumar Ghosh
Recommend
More recommend