effective field theory for higgs physics
play

Effective field theory for Higgs Physics Margherita Ghezzi Higgs - PowerPoint PPT Presentation

Effective field theory for Higgs Physics Margherita Ghezzi Higgs Hunting 2016 Paris, 1st September 2016 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 1 / 16 Higgs Effective Lagrangian In searches for new physics we can


  1. Effective field theory for Higgs Physics Margherita Ghezzi Higgs Hunting 2016 Paris, 1st September 2016 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 1 / 16

  2. Higgs Effective Lagrangian In searches for new physics we can distinguish among: Direct searches Searches for new resonances. Top-down approach: BSM models (model-dependent) Unknowns: model parameters. Bottom-up approach: EFT (”model-independent”) Unknowns: Wilson coefficients Assumptions: The dynamical degrees of freedom at the EW scale are those of the SM New Physics appears at some high scale Λ >> v (decoupling) Absence of mixing of new heavy scalars with the SM Higgs doublet SU (2) L × U (1) Y is linearly realized at high energies Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 2 / 16

  3. Higgs Effective Lagrangian In searches for new physics we can distinguish among: Direct searches Searches for new resonances. Top-down approach: BSM models (model-dependent) Unknowns: model parameters. Bottom-up approach: EFT (”model-independent”) Unknowns: Wilson coefficients Assumptions: The dynamical degrees of freedom at the EW scale are those of the SM New Physics appears at some high scale Λ >> v (decoupling) Absence of mixing of new heavy scalars with the SM Higgs doublet SU (2) L × U (1) Y is linearly realized at high energies Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 2 / 16

  4. Higgs Effective Lagrangian Compatibility with the SM F f κ ATLAS and CMS 2 LHC Run 1 The Higgs boson looks like a doublet 68% CL Gap between m H and the New 1 95% CL Physics scale Best fit SM expected 0 We look for small deviations from the SM: precision physics era − 1 NLO is the new standard @LHC → γ γ Combined H Many calculations at NNLO QCD − → → 2 H ZZ H WW → τ τ → H H bb Many calculations at NLO EW 0 0.5 1 1.5 2 κ f V Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 3 / 16

  5. Higgs Effective Lagrangian Higgs doublet - EW symmetry is linearly realized c i � � Λ n − 4 O D = n L HEFT = L SM + i n > 4 i L HEFT = L SM + 1 Λ L D =5 + 1 Λ 2 L D =6 + 1 Λ 3 L D =7 + 1 Λ 4 L D =8 + . . . L D =5 and L D =7 : lepton number violating L D =8 and higher: parametrically subleading L D =6 : leading effect ✞ ☎ Λ 2 L D =6 1 L HEFT = L SM + ✝ ✆ C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchm¨ uller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, M¨ uhlleitner and Spira, JHEP 1307 (2013) 035 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 4 / 16

  6. Higgs Effective Lagrangian Higgs doublet - EW symmetry is linearly realized c i � � Λ n − 4 O D = n L HEFT = L SM + i n > 4 i L HEFT = L SM + 1 Λ L D =5 + 1 Λ 2 L D =6 + 1 Λ 3 L D =7 + 1 Λ 4 L D =8 + . . . L D =5 and L D =7 : lepton number violating L D =8 and higher: parametrically subleading L D =6 : leading effect ✞ ☎ Λ 2 L D =6 1 L HEFT = L SM + ✝ ✆ C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchm¨ uller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, M¨ uhlleitner and Spira, JHEP 1307 (2013) 035 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 4 / 16

  7. Higgs Effective Lagrangian Higgs doublet - EW symmetry is linearly realized c i � � Λ n − 4 O D = n L HEFT = L SM + i n > 4 i L HEFT = L SM + 1 Λ L D =5 + 1 Λ 2 L D =6 + 1 Λ 3 L D =7 + 1 Λ 4 L D =8 + . . . L D =5 and L D =7 : lepton number violating L D =8 and higher: parametrically subleading L D =6 : leading effect ✞ ☎ Λ 2 L D =6 1 L HEFT = L SM + ✝ ✆ C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchm¨ uller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, M¨ uhlleitner and Spira, JHEP 1307 (2013) 035 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 4 / 16

  8. Higgs Effective Lagrangian Higgs doublet - EW symmetry is linearly realized c i � � Λ n − 4 O D = n L HEFT = L SM + i n > 4 i L HEFT = L SM + 1 Λ L D =5 + 1 Λ 2 L D =6 + 1 Λ 3 L D =7 + 1 Λ 4 L D =8 + . . . L D =5 and L D =7 : lepton number violating L D =8 and higher: parametrically subleading L D =6 : leading effect ✞ ☎ Λ 2 L D =6 1 L HEFT = L SM + ✝ ✆ C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchm¨ uller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, M¨ uhlleitner and Spira, JHEP 1307 (2013) 035 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 4 / 16

  9. Effective Lagrangian for a Higgs doublet GIMR/Warsaw basis ϕ 6 and ϕ 4 D 2 X 3 ψ 2 ϕ 3 (¯ LL )(¯ ( ¯ RR )( ¯ (¯ LL )( ¯ LL ) RR ) RR ) (¯ l p γ µ l r )(¯ (¯ f ABC G Aν µ G Bρ ν G Cµ ( ϕ † ϕ ) 3 ( ϕ † ϕ )(¯ Q ll l s γ µ l t ) Q ee (¯ e p γ µ e r )(¯ e s γ µ e t ) Q le l p γ µ l r )(¯ e s γ µ e t ) Q G Q ϕ Q eϕ l p e r ϕ ) ρ f ABC � Q (1) q s γ µ q t ) u s γ µ u t ) (¯ u s γ µ u t ) G Aν µ G Bρ ν G Cµ ( ϕ † ϕ ) � ( ϕ † ϕ ) ( ϕ † ϕ )(¯ (¯ q p γ µ q r )(¯ Q uu (¯ u p γ µ u r )(¯ Q lu l p γ µ l r )(¯ Q � Q ϕ � Q uϕ q p u r � ϕ ) qq G ρ � � ⋆ � � Q (3) ( ¯ d p γ µ d r )( ¯ (¯ l p γ µ l r )( ¯ (¯ q p γ µ τ I q r )(¯ q s γ µ τ I q t ) d s γ µ d t ) d s γ µ d t ) ε IJK W Iν µ W Jρ ν W Kµ ϕ † D µ ϕ ϕ † D µ ϕ ( ϕ † ϕ )(¯ Q dd Q ld Q W Q ϕD Q dϕ q p d r ϕ ) qq ρ Q (1) (¯ q s γ µ q t ) u s γ µ u t ) e s γ µ e t ) l p γ µ l r )(¯ Q eu (¯ e p γ µ e r )(¯ Q qe (¯ q p γ µ q r )(¯ ε IJK � W Iν µ W Jρ ν W Kµ Q � lq ρ W Q (3) (¯ e p γ µ e r )( ¯ Q (1) l p γ µ τ I l r )(¯ q s γ µ τ I q t ) (¯ d s γ µ d t ) (¯ q p γ µ q r )(¯ u s γ µ u t ) Q ed qu X 2 ϕ 2 ψ 2 Xϕ ψ 2 ϕ 2 D lq Q (1) u p γ µ u r )( ¯ d s γ µ d t ) Q (8) q p γ µ T A q r )(¯ u s γ µ T A u t ) (¯ (¯ qu ↔ ud (¯ Q (1) D µ ϕ )(¯ Q ϕG ϕ † ϕ G A µν G Aµν Q eW l p σ µν e r ) τ I ϕW I ( ϕ † i l p γ µ l r ) µν ϕl Q (8) u p γ µ T A u r )( ¯ Q (1) q p γ µ q r )( ¯ (¯ d s γ µ T A d t ) (¯ d s γ µ d t ) ↔ ud qd ϕ † ϕ � (¯ Q (3) µ ϕ )(¯ Q ϕ � G A µν G Aµν Q eB l p σ µν e r ) ϕB µν ( ϕ † i D I l p τ I γ µ l r ) ϕl Q (8) q p γ µ T A q r )( ¯ G (¯ d s γ µ T A d t ) qd ↔ Q ϕW ϕ † ϕ W I µν W Iµν Q uG (¯ q p σ µν T A u r ) � ϕ G A Q ϕe ( ϕ † i D µ ϕ )(¯ e p γ µ e r ) µν (¯ LR )( ¯ RL ) and (¯ LR )(¯ LR ) B -violating ↔ ϕ † ϕ � q p σ µν u r ) τ I � Q (1) Q ϕ � W I µν W Iµν Q uW (¯ ϕ W I ( ϕ † i D µ ϕ )(¯ q p γ µ q r ) � � � � µν ϕq (¯ p e r )( ¯ d s q j W Q ledq l j t ) Q duq ε αβγ ε jk ( d α p ) T Cu β ( q γ j s ) T Cl k r t ↔ Q (3) � � � � Q ϕB ϕ † ϕ B µν B µν Q uB (¯ q p σ µν u r ) � ϕ B µν ( ϕ † i D I µ ϕ )(¯ q p τ I γ µ q r ) Q (1) ϕq (¯ q j p u r ) ε jk (¯ q k s d t ) ε αβγ ε jk ( q α j p ) T Cq β k ( u γ s ) T Ce t Q qqu quqd r ↔ ϕ † ϕ � � � � � Q ϕ � B µν B µν Q dG (¯ q p σ µν T A d r ) ϕ G A Q ϕu ( ϕ † i D µ ϕ )(¯ u p γ µ u r ) Q (8) Q (1) (¯ q j p T A u r ) ε jk (¯ q k s T A d t ) ε αβγ ε jk ε mn ( q α j p ) T Cq β k ( q γ m s ) T Cl n B µν qqq quqd r t ↔ � � � � D µ ϕ )( ¯ Q ϕW B ϕ † τ I ϕ W I µν B µν Q dW (¯ q p σ µν d r ) τ I ϕ W I Q ϕd ( ϕ † i d p γ µ d r ) Q (1) (¯ Q (3) l j p e r ) ε jk (¯ q k s u t ) ε αβγ ( τ I ε ) jk ( τ I ε ) mn ( q α j p ) T Cq β k ( q γ m s ) T Cl n µν qqq lequ r t ε αβγ � � � � ϕ † τ I ϕ � W I µν B µν (¯ q p σ µν d r ) ϕ B µν i ( � ϕ † D µ ϕ )(¯ u p γ µ d r ) Q (3) (¯ Q ϕ � Q dB Q ϕud l j p σ µ ν e r ) ε jk (¯ q k s σ µ ν u t ) Q duu ( d α p ) T Cu β ( u γ s ) T Ce t W B lequ r 15 bosonic operators 25 four-fermion operators (assuming barionic number 19 single-fermionic-current conservation) operators 15+19+25=59 independent operators (for 1 fermion generation) Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085 Margherita Ghezzi EFT for Higgs Physics Higgs Hunting 2016 5 / 16

Recommend


More recommend