can the 125 gev higgs be the little higgs
play

Can the 125 GeV Higgs be the Little Higgs Jrgen Reuter DESY - PowerPoint PPT Presentation

J. R. Reuter Little Higgs Models DESY, 10.6.2013 Can the 125 GeV Higgs be the Little Higgs Jrgen Reuter DESY JRR/Tonini, JHEP 1302 (2013) 077; Kilian/JRR PRD 70 (2004), 015004 LHC Physics Discussion, DESY, 10.6.2013 J. R. Reuter Little


  1. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Can the 125 GeV Higgs be the Little Higgs Jürgen Reuter DESY JRR/Tonini, JHEP 1302 (2013) 077; Kilian/JRR PRD 70 (2004), 015004 LHC Physics Discussion, DESY, 10.6.2013

  2. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Higgs as Pseudo-Goldstone boson Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry Λ O (1 GeV) Analogous: QCD Scale Λ : chiral symmetry breaking, quarks, SU p 3 q c v Scale v : pions, kaons, . . . O (150 MeV)

  3. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Higgs as Pseudo-Goldstone boson Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry Λ O (1 TeV) Scale Λ : global symmetry breaking, new particles, new (gauge) IA Scale v : Higgs, W { Z , ℓ ˘ , . . . v O (250 GeV) Without Fine-Tuning: experimentally excluded

  4. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Collective symmetry breaking and 3-scale models Collective symmetry breaking: Arkani-Hamed/Cohen/Georgi/Nelson/. . . , 2001 2 different global symmetries; one of them unbroken ñ Higgs exact Goldstone boson Coleman-Weinberg: boson masses by radia- m H „ g 1 g 2 4 π Λ tive corrections, but: m H only at 2-loop level 4 π Λ O (10 TeV) Scale Λ : global SB, new IA Scale F : Pseudo-Goldstone F O (1 TeV) bosons, new vectors/fermions v Scale v : Higgs, W { Z , ℓ ˘ , . . . O (250 GeV)

  5. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Characteristics and Spectra Scale Λ : “hidden sector”, Λ O ( � 10 TeV) symmetry breaking O (1 TeV) F Scale F : new particles v O (250 GeV) Scale v : h , W { Z , ℓ ˘ , . . . Terascale: new particles to stabilize the hierarchy M [TeV] q L ˜ ˜ Little Higgs SUSY t 2 ˜ b 2 Φ q R ˜ ˜ Φ ±± b 1 1 . 25 Φ ± ˜ Z ′ t 1 T W ′ ± 1 . 00 Φ P g ˜ U, C 0 . 75 γ ′ χ ± χ 0 H ± ˜ 4 , ˜ H, A 2 χ 0 ˜ 0 . 50 3 τ 2 ˜ χ ± χ 0 2 , ˜ ˜ ˜ h ℓ L 1 ˜ ν ℓ 0 . 25 t ˜ t ℓ R τ 1 ˜ η h χ 0 ˜ W ± Z 1

  6. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Generic properties of Little-Higgs models – Extended global symmetry (extended scalar sector) – Specific functional form of the potential – Extended gauge symmetry: γ 1 , Z 1 , W 1 ˘ – New heavy fermions: T , but also U, C, . . . Product Group Models Simple Group Models (e.g. Littlest Higgs) (e.g. Simplest Little Higgs) H → H ′ H 1 → H ′ H 2 → H ′ 1 2 H 1 ∋ h ∈ H 2 G 1 → G ′ G 2 → G ′ [ H 1 , H 2 ] � = 0 1 1 g 1 � = 0 g 2 � = 0 G diag → G ′ / / H 1 ⊂ H H 2 ⊂ H

  7. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Generic properties of Little-Higgs models – Extended global symmetry (extended scalar sector) – Specific functional form of the potential – Extended gauge symmetry: γ 1 , Z 1 , W 1 ˘ – New heavy fermions: T , but also U, C, . . . Product Group Models Moose Models (e.g. Littlest Higgs) (e.g. Minimal Moose Model) H → H ′ H 1 / H 2 / H 3 / H 4 / H 5 / • • • H n / G 1 → G ′ G 2 → G ′ [ H 1 , H 2 ] � = 0 1 1 g 1 � = 0 g 2 � = 0 / / H 1 ⊂ H H 2 ⊂ H G 1 / / G 2 / G 3 G 4 / • • • / G n

  8. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Little Higgs Models Plethora of “Little Higgs Models” in 3 categories: § Moose Models § Orig. Moose (Arkani-Hamed/Cohen/Georgi, 0105239) § Simple Moose (Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020) § Linear Moose (Casalbuoni/De Curtis/Dominici, 0405188) § Simple (Goldstone) Representation Models § Littlest Higgs (Arkani-Hamed/Cohen/Katz/Nelson, 0206021) § Antisymmetric Little Higgs (Low/Skiba/Smith, 0207243) § Custodial SU p 2 q Little Higgs (Chang/Wacker, 0303001) § Littlest Custodial Higgs (Chang, 0306034) § Little SUSY (Birkedal/Chacko/Gaillard, 0404197) § Simple (Gauge) Group Models § Orig. Simple Group Model (Kaplan/Schmaltz, 0302049) § Holographic Little Higgs (Contino/Nomura/Pomarol, 0306259) § Simplest Little Higgs (Schmaltz, 0407143) § Simplest Little SUSY (Roy/Schmaltz, 0509357) § Simplest T parity (Butenuth/JRR, 2010)

  9. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Varieties of Particle spectra SO p 5 q , G “ r SU p 2 q ˆ U p 1 qs 2 Sp p 6 q , G “ r SU p 2 q ˆ U p 1 qs 2 H “ SU p 5 q H “ SO p 6 q SU p 2 q ˆ U p 1 q SU p 2 q ˆ U p 1 q Arkani-Hamed/Cohen/Katz/Nelson, 2002 Low/Skiba/Smith, 2002 Z ′ Z ′ m m Φ W ′ ± W ′ ± B ′ Φ ±± Φ P Φ ± T T Φ Φ P B ′ A H ± H t t h h Z Z W ± W ± H “ r SU p 3 qs 2 m r SU p 2 qs 2 , G “ SU p 3 q ˆ U p 1 q W ′ ± ù ñ Z ′ SU p 2 q ˆ U p 1 q X 0 /Y 0 T Schmaltz, 2004 r SU p 4 qs 4 Ñ r SU p 3 qs 4 U, C § Kaplan/Schmaltz, 2003 h 2 HDM , h 1 { 2 , Φ 1 1 , 2 , 3 , Φ 1 P 1 , 2 , 3 , t η Z Z 1 1 ,..., 8 , W 1 ˘ 1 , 2 , q 1 , ℓ 1 W ±

  10. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Effective Dim. 6 Operators JJ “ 1 O p I q F 2 tr r J p I q ¨ J p I q s Ý Ñ ——————————————————————————————— ´ v 2 O 1 1 ` p Dh q : h ˘ ` h : p D h q ˘ 2 | Dh | 2 “ ¨ h, 1 F 2 Ý Ñ F 2 p h : h ´ v 2 { 2 q p Dh q : ¨ p Dh q O 1 1 “ hh ——————————————————————————————— h, 3 “ 1 1 O 1 3 p h : h ´ v 2 { 2 q 3 Ý Ñ F 2

  11. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Ý Ñ W W “ ´ 1 1 O 1 2 p h : h ´ v 2 { 2 q tr W µν W µν F 2 O B “ 1 i 2 p D µ h q : p D ν h q B µν F 2 BB “ ´ 1 1 O 1 4 p h : h ´ v 2 { 2 q B µν B µν F 2 ——————————————————————————————— 1 Ý Ñ O V q “ F 2 qh p { Dh q q

  12. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Constraints on LHM Constraints from contact IA: ( f p 3 q JJ , f p 1 q 4 . 5 TeV À F { c 2 10 TeV À F { c 1 2 JJ ) c, c 1 ! 1 ✸ Constraints evaded ð ñ B 1 , Z 1 , W 1 ˘ superheavy ( O p Λ q ) decouple from fermions ∆ S , ∆ T in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Chen/Dawson, 2003; Kilian/JRR, 2003 ∆ S 2 v 2 λ 2 ” c 2 p c 2 ´ s 2 q ` 5 c 1 2 p c 1 2 ´ s 1 2 q ı v 2 v 2 Á v 2 α ∆ T Ñ 5 2 φ 8 π “ ´ F 2 Ñ 0 F 2 ´ g 2 g 1 2 4 M 4 F 2 φ General models § Triplet sector: (almost) identical to Littlest Higgs ( ∆ S only) § More freedom in U p 1 q sector: ( ∆ T )

  13. J. R. Reuter Little Higgs Models DESY, 10.6.2013 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 § T parity: T a Ñ T a , X a Ñ ´ X a , automorphism of coset space analogous to R parity in SUSY, KK parity in extra dimensions § Bounds on F MUCH relaxed, F „ 1 TeV but: Pair production!, typical cascade decays § Lightest T -odd particle (LTP) ñ Candidate for Cold Dark Matter

  14. J. R. Reuter Little Higgs Models DESY, 10.6.2013 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 § T parity: T a Ñ T a , X a Ñ ´ X a , automorphism of coset space analogous to R parity in SUSY, KK parity in extra dimensions § Bounds on F MUCH relaxed, F „ 1 TeV but: Pair production!, typical cascade decays § Lightest T -odd particle (LTP) ñ Candidate for Cold Dark Matter f M (GeV) A H 108 144 180 216 252 288 Littlest Higgs: A 1 LTP 500 W 1 , Z 1 „ 650 GeV, Φ „ 1 TeV 400 T, T 1 „ 0.7-1 TeV M H (GeV) 300 Annihilation: A 1 A 1 Ñ h Ñ WW, ZZ, hh Hubisz/Meade, 2005 200 0/10/50/70/100 100 600 800 1000 1200 1400 1600 1800 2000 f (GeV)

  15. J. R. Reuter Little Higgs Models DESY, 10.6.2013 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 § T parity: T a Ñ T a , X a Ñ ´ X a , automorphism of coset space analogous to R parity in SUSY, KK parity in extra dimensions § Bounds on F MUCH relaxed, F „ 1 TeV but: Pair production!, typical cascade decays § Lightest T -odd particle (LTP) ñ Candidate for Cold Dark Matter f M (GeV) A H 108 144 180 216 252 288 Littlest Higgs: A 1 LTP 500 W 1 , Z 1 „ 650 GeV, Φ „ 1 TeV 400 T, T 1 „ 0.7-1 TeV M H (GeV) 300 Annihilation: A 1 A 1 Ñ h Ñ WW, ZZ, hh Hubisz/Meade, 2005 200 0/10/50/70/100 100 600 800 1000 1200 1400 1600 1800 2000 f (GeV) § T parity Simplest LH: Pseudo-Axion η LTP Z 1 remains odd: good or bad (?) Kilian/Rainwater/JRR/Schmaltz § T parity might be anomalous (???) Hill/Hill, 2007

  16. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Reach in the gauge boson sector: depends on mixing angle

  17. J. R. Reuter Little Higgs Models DESY, 10.6.2013 Motivation How to constrain a generic model in HEP ? § direct searches of resonances § electroweak precision tests § flavour constraints § nowadays: Higgs sector Higgs sector is the key to understand EW-scale physics (and beyond?)

Recommend


More recommend