mssm inflation
play

MSSM inflation Sami Nurmi University of Helsinki Cosmo 08 August - PowerPoint PPT Presentation

Outline MSSM inflation Supergravity Conclusions MSSM inflation Sami Nurmi University of Helsinki Cosmo 08 August 26 2008 Sami Nurmi MSSM inflation Outline MSSM inflation Supergravity Conclusions Outline Consider flat directions of


  1. Outline MSSM inflation Supergravity Conclusions MSSM inflation Sami Nurmi University of Helsinki Cosmo 08 August 26 2008 Sami Nurmi MSSM inflation

  2. Outline MSSM inflation Supergravity Conclusions Outline ◮ Consider flat directions of the MSSM as inflaton candidates ◮ Known gauge couplings! ◮ Low inflationary scale, very flat potential required ◮ Constraints on the underlying supergravity model that determines the potential ◮ Try to find sugra models where the constraints are satisfied Sami Nurmi MSSM inflation

  3. Outline MSSM inflation Supergravity Conclusions Flat directions ◮ Supersymmetric vacuum degenerate, potential vanishes along flat directions ◮ Flatness lifted by susy breaking and non-renormalizable terms in the potential Sami Nurmi MSSM inflation

  4. Outline MSSM inflation Supergravity Conclusions MSSM inflation ◮ d = 6 flat directions LLe and udd candidates for the inflaton 1 ◮ After susy breaking the potential to lowest order becomes V ( φ ) = 1 2 m 2 | φ | 2 − A λ 6 | φ | 6 + λ 2 | φ | 10 ◮ If A 2 = 40 m 2 , saddle point at | φ 0 | ∼ ( m / M P ) 1 / 4 M P = ⇒ Inflation with: � m � 1 / 2 N 2 ζ ∼ ∗ , n s ∼ 1 − 4 / N ∗ M P ◮ Low scale H ∼ 1 GeV , A 2 = 40 m 2 must hold very precisely 1 [Allahverdi, Enqvist, Garcia-Bellido, Mazumdar] Sami Nurmi MSSM inflation

  5. Outline MSSM inflation Supergravity Conclusions What fixes A 2 = 40 m 2 ? G = K + ln | W | 2 ◮ Sugra: V = e G ( G M G M − 3) , ◮ Consider a model with 2 ˆ λ ˆ 6 φ 6 = W + W m ) | φ | 2 + ˆ m ) | φ | 4 + . . . ˆ m ) + ˆ K ( h m , h ∗ Z 2 ( h m , h ∗ Z 4 ( h m , h ∗ K = ◮ V = e G ( G M G M − 3) = 1 2 m 2 | φ | 2 − A λ 6 | φ | 6 + λ 2 | φ | 10 + O ( | φ 0 | 12 ) ◮ A 2 = 40 m 2 reads ( K m = ∂ h m K , K m = ( K m ¯ n ) − 1 K ¯ n ) K m ˆ m ˆ | ˆ K m − 6ˆ Z − 1 K ¯ ˆ m + 3 | 2 Z 2 ¯ 2 K m ˆ K m ˆ = 20( ˆ K m + ˆ n (ˆ Z 2 m ˆ ˆ n − ˆ ˆ K ¯ Z − 2 Z − 1 Z 2¯ Z 2 m ¯ n ) − 2) 2 2 2 [K. Enqvist, L. Mether, SN],[SN] Sami Nurmi MSSM inflation

  6. Outline MSSM inflation Supergravity Conclusions What fixes A 2 = 40 m 2 ? G = K + ln | W | 2 ◮ Sugra: V = e G ( G M G M − 3) , ◮ Consider a model with 2 ˆ λ ˆ 6 φ 6 = W + W m ) | φ | 2 + ˆ m ) | φ | 4 + . . . ˆ m ) + ˆ K ( h m , h ∗ Z 2 ( h m , h ∗ Z 4 ( h m , h ∗ K = ◮ V = e G ( G M G M − 3) = 1 2 m 2 | φ | 2 − A λ 6 | φ | 6 + λ 2 | φ | 10 + O ( | φ 0 | 12 ) ◮ A 2 = 40 m 2 reads ( K m = ∂ h m K , K m = ( K m ¯ n ) − 1 K ¯ n ) K m ˆ m ˆ | ˆ K m − 6ˆ Z − 1 K ¯ ˆ m + 3 | 2 Z 2 ¯ 2 K m ˆ K m ˆ = 20( ˆ K m + ˆ n (ˆ Z 2 m ˆ ˆ n − ˆ ˆ K ¯ Z − 2 Z − 1 Z 2¯ Z 2 m ¯ n ) − 2) 2 2 2 [K. Enqvist, L. Mether, SN],[SN] Sami Nurmi MSSM inflation

  7. Outline MSSM inflation Supergravity Conclusions What fixes A 2 = 40 m 2 ? G = K + ln | W | 2 ◮ Sugra: V = e G ( G M G M − 3) , ◮ Consider a model with 2 ˆ λ ˆ 6 φ 6 = W + W m ) | φ | 2 + ˆ m ) | φ | 4 + . . . ˆ m ) + ˆ K ( h m , h ∗ Z 2 ( h m , h ∗ Z 4 ( h m , h ∗ K = ◮ V = e G ( G M G M − 3) = 1 2 m 2 | φ | 2 − A λ 6 | φ | 6 + λ 2 | φ | 10 + O ( | φ 0 | 12 ) ◮ A 2 = 40 m 2 reads ( K m = ∂ h m K , K m = ( K m ¯ n ) − 1 K ¯ n ) K m ˆ m ˆ | ˆ K m − 6ˆ Z − 1 K ¯ ˆ m + 3 | 2 Z 2 ¯ 2 K m ˆ K m ˆ = 20( ˆ K m + ˆ n (ˆ Z 2 m ˆ ˆ n − ˆ ˆ K ¯ Z − 2 Z − 1 Z 2¯ Z 2 m ¯ n ) − 2) 2 2 2 [K. Enqvist, L. Mether, SN],[SN] Sami Nurmi MSSM inflation

  8. Outline MSSM inflation Supergravity Conclusions ahler potentials that yield A 2 = 40 m 2 K¨ ◮ Solved by: � � m ) α m | φ | 2 + . . . β m ln ( h m + h ∗ ( h m + h ∗ K = m ) + κ m m α = � α m , β = � β m α (36 α + 16 − 12 β ) + ( β + 7) 2 = 0 , ◮ Includes for example the values β = P β m α = P α m − 7 0 − 25 − 7 9 − 1 − 11 9 − 11 − 4 Sami Nurmi MSSM inflation

  9. Outline MSSM inflation Supergravity Conclusions Higher order corrections ◮ Saddle point can be removed by higher order corrections V = 1 2 m 2 | φ | 2 − A λ 6 | φ | 6 + λ 2 | φ | 10 + O ( | φ 0 | ) 12 � �� � Leading order part O ( | φ 0 | 10 ) ◮ Corrections | φ 0 | 12 and | φ 0 | 14 crucial, | φ 0 | 16 affects the spectral index Sami Nurmi MSSM inflation

  10. Outline MSSM inflation Supergravity Conclusions K¨ ahler potentials for the MSSM inflation ◮ Potential flat enough close to | φ 0 | if 3 Z 2 | φ | 2 + µ ˆ 2 | φ | 4 + ν ˆ 2 | φ | 6 + ρ ˆ 2 | φ | 8 + . . . K = ˆ K + ˆ Z 2 Z 3 Z 4 K = � Z 2 = κ � m ) α m and where ˆ m ) , ˆ m β m ln ( h m + h ∗ m ( h m + h ∗ β = P β m α = P α m γ = P α 2 δ = P α 3 m /β 2 m /β m m 1 − 7 0 4 − 3 µ δ 207 µ 2 + 162 − 25 − 46 81 − 22 − 2414 1863 µ − 2804 628 − 7 9 µ 23 ν 9 16767 − 855 µ 2 + 162 − 1 81 − 26 28 69255 − 3736 6556 7695 µ − 12596 − 11 9 µ 19 ν 9 100 µ 2 + 36 − 7 8 − 5 − 339 200 µ − 1371 73 − 11 − 4 2 µ 5 ν 1600 − 3 [Enqvist, Mether, SN],[SN] Sami Nurmi MSSM inflation

  11. Outline MSSM inflation Supergravity Conclusions ◮ An example of the solutions: � � m ) α m − β m | φ | 2 � � m ) − β m − κ ( h m + h ∗ ( h m + h ∗ K = − ln m m with β m = − 1 , α 1 = 1 , α 2 = α 3 = α 4 = α 5 = − 1 4 , α 6 = α 7 = 0 Sami Nurmi MSSM inflation

  12. Outline MSSM inflation Supergravity Conclusions Conclusions ◮ MSSM inflation can be realized ”naturally” in certain supergravity models ◮ Flat inflaton potential not accidental but a direct consequence of the supergravity model ◮ Requires a specific K¨ ahler potential, to some extent motivated by various string theory compactifications ◮ Many open questions: initial conditions 4 , dynamics of the moduli fields 5 , loop corrections... 4 [Allahverdi, Dutta, Mazumdar] 5 [Lalak, Turzynski] Sami Nurmi MSSM inflation

Recommend


More recommend