sampling distribution
play

Sampling distribution STAT 587 (Engineering) Iowa State University - PowerPoint PPT Presentation

Sampling distribution STAT 587 (Engineering) Iowa State University September 23, 2020 Sampling distribution Sampling distribution The sampling distribution of a statistic is the distribution of the statistic over different realizations of the


  1. Sampling distribution STAT 587 (Engineering) Iowa State University September 23, 2020

  2. Sampling distribution Sampling distribution The sampling distribution of a statistic is the distribution of the statistic over different realizations of the data . Find the following sampling distributions: ind ∼ N ( µ, σ 2 ) , If Y i Y − µ Y and S/ √ n. If Y ∼ Bin ( n, p ) , Y n .

  3. Sampling distribution Normal model Normal model ind ∼ N ( µ, σ 2 ) , then Let Y i Y ∼ N ( µ, σ 2 /n ) . Sampling distribution for N(35, 25) average n = 20 n = 30 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 density n = 40 n = 50 0.6 0.4 0.4 0.2 0.2 0.0 0.0 30.0 32.5 35.0 37.5 40.0 30.0 32.5 35.0 37.5 40.0 average

  4. Sampling distribution Normal model Normal model ind ∼ N ( µ, σ 2 ) , then the t-statistic Let Y i T = Y − µ S/ √ n ∼ t n − 1 . Sampling distribution of the t−statistic n = 20 n = 30 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 density 0.0 0.0 n = 40 n = 50 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 −4 −2 0 2 4 −4 −2 0 2 4 t

  5. Sampling distribution Binomial model Binomial model Let Y ∼ Bin ( n, p ) , then � Y � p = 0 , 1 n, 2 n, . . . , n − 1 P n = p = P ( Y = np ) , , 1 . n Sampling distribution for binomial proportion p = 0.5 p = 0.8 0.3 0.2 n = 10 0.1 0.0 0.100 0.075 n = 100 0.050 0.025 0.000 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Sample proportion (y/n)

  6. Sampling distribution Approximate sampling distributions Approximate sampling distributions Recall that from the Central Limit Theorem (CLT): n � ∼ N ( nµ, nσ 2 ) ∼ N ( µ, σ 2 /n ) · X = S/n · S = X i and i =1 for independent X i with E [ X i ] = µ and V ar [ X i ] = σ 2 .

  7. Sampling distribution Approximate sampling distributions Approximate sampling distribution for binomial proportion ind If Y = � n i =1 X i with X i ∼ Ber ( p ) , then Y � p, p [1 − p ] � ∼ N · . n n Approximate sampling distributions for binomial proportion p = 0.5 p = 0.8 3 2 n = 10 1 0 10.0 7.5 n = 100 5.0 2.5 0.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Sample proportion (y/n)

  8. Sampling distribution Summary Summary Sampling distributions: ind ∼ N ( µ, σ 2 ) , If Y i Y ∼ N ( µ, σ 2 /n ) and Y − µ S/ √ n ∼ t n − 1 . If Y ∼ Bin ( n, p ) , � Y � P n = p = P ( Y = np ) and � � p, p [1 − p ] Y ∼ N · . n n If X i independent with E [ X i ] = µ and V ar [ X i ] = σ 2 , then n � ∼ N ( nµ, nσ 2 ) S = X i · i =1 and ∼ N ( µ, σ 2 /n ) X = S/n ·

Recommend


More recommend