salt chemistry and redox control
play

Salt chemistry and Redox control Jinsuo Zhang 1,2 1) Virginia Tech - PowerPoint PPT Presentation

Salt chemistry and Redox control Jinsuo Zhang 1,2 1) Virginia Tech 2) Ohio State University Research Team q PI: Dr. Jinsuo Zhang, Dr. Shaoqiang Guo q Students: Ryan Chesser, Yafei Wang (graduated from OSU, current Ph.D student of VT), Qiufeng


  1. Salt chemistry and Redox control Jinsuo Zhang 1,2 1) Virginia Tech 2) Ohio State University

  2. Research Team q PI: Dr. Jinsuo Zhang, Dr. Shaoqiang Guo q Students: Ryan Chesser, Yafei Wang (graduated from OSU, current Ph.D student of VT), Qiufeng Yang, Nik Shay (graduated), Bill Cohen (Graduated), Wentao Zhou (graduated), Evan Wu (graudated) q Visiting Scholar: Dr. Wei Wu All the experimental measurements presented were conducted at The Ohio State University Nuclear Materials and Fuel Nuclear Materials and Fuel 2 Cycle center Cycle center

  3. Salt impurities/source term q Tritium q Noble Gas (Xe, Kr) q Noble metals (Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Zn, Ga, Ge, As ) q Halogens (I, Br) q Tellurium Group (Te, Sb, Se) q Barium, Strontium (Ba, Sr) q Rare earth/alkaline metals (Y, La, Ce, Pr, Nd, Pm, Gd, Tb, Dy, Ho, Er, Zr, Sm, Eu, Sr, Ba, Rb, Cs) q Actinide (U, Pu, Np) q Corrosion Products (Ni, Fe, Cr) Nuclear Materials and Fuel Nuclear Materials and Fuel 3 Cycle center Cycle center

  4. What do we have to do q Review the available data q Measure fundamental data of element in the salt and liquid Bi q Develop chemical (redox) control method q Develop and design salt purification system in operation Nuclear Materials and Fuel Nuclear Materials and Fuel 4 Cycle center Cycle center

  5. Measurement-experimental set up q A three-electrode system: working electrode (WE); Count electrode (CE) and Reference electrode (RE). q Glove box (purged with Argon): the O 2 and H 2 O was controlled below 4.0 during all experiments. q Electrochemical technology: CV, EIS, LP, etc q Properties measured: apparent potential, diffusion coefficient, activity coefficient, exchange current, Nuclear Materials and Fuel Nuclear Materials and Fuel 5 Cycle center Cycle center

  6. Determining of reference potential Zone I: 5s current pulse is applied, and the potential of the W electrode becomes more negative due to the formation of a potassium layer on electrode surface. More negative potential at greater current due to the potential drop in electrolyte. 650 หš C Zone II: No current applied. Consistent potential represents K + /K potential. ๐ฌ๐Ÿ๐ž๐ฉ๐ฒ (V vs. Pt) ๐‘ญ ๐‹ + ๐‹ Temperature (ยฐC) Standard Deviation (mV) โ„ Zone III: Potential returns back 650 -1.272 3.2 due to dissolution of K. 700 -1.270 2.9 750 -1.271 4.6 Electrolyte resistance of 0.12 โ„ฆโˆ™cm 2 at 650 หš C, 0.11 โ„ฆโˆ™cm 2 at 700 หš C and 0.09 โ„ฆโˆ™cm 2 at 750 หš C Nuclear Materials and Fuel Nuclear Materials and Fuel 6 Cycle center Cycle center

  7. Measured CV signal Nuclear Materials and Fuel Nuclear Materials and Fuel 7 Cycle center Cycle center

  8. Diffusion coefficient and Apparent potential of Dy and La Diffusion activation energy: 51.5 kJ/mol for Dy 3+ , 127 kJ/mol for La 3+ Both diffusion coefficient and apparent potential increases with temperature Nuclear Materials and Fuel Nuclear Materials and Fuel 8 Cycle center Cycle center

  9. Fundamental data of Corrosion Products Nuclear Materials and Fuel Nuclear Materials and Fuel 9 Cycle center Cycle center

  10. Exchange current density of Fe and Cr โ€ข Activation energy: 94.42 kJ/mol for Cr/Cr 2+ , and 87.69 kJ/mol for Fe/Fe 2+ in molten FLiNaK Nuclear Materials and Fuel Nuclear Materials and Fuel 10 Cycle center Cycle center

  11. Redox Control q Cover gas control method q Metal control method q Dissolved salt control method q Refueling control method q Cathodic protection Nuclear Materials and Fuel Nuclear Materials and Fuel 11 Cycle center Cycle center

  12. Dissolved Salt control method Tungsten electrode, 700 หš C, FLiNaK-EuF 3 -EuF 2 , 200 mV/s Nuclear Materials and Fuel Nuclear Materials and Fuel 12 Cycle center Cycle center

  13. ๏ฟฝ Concentration ratio of Eu 3+ /Eu 2+ โ€ข Randles-Sevcik equation is not valid for system containing both members (e.g., both U 4+ and U 3+ )) of the redox couple: ./0 ๐‘— " = 0.4463๐‘œ๐บ๐ท , ๐ธ ./0 ๐‘œ๐บ๐‘ค ๐‘†๐‘ˆ โ€ข Theory developed by Keightley et al. are adopted [1]: ./0 ./0 + ๐ท , =>? ./0 789 ๐ธ 789 ;< ๐ธ ;< โ€ข ๐šฅ โƒ— = ๐‘œ๐บ ๐ท , ๐œ“ ๐œŠ; ๐œŠ E @A ./0 ./0 + ๐ท , =>? ./0 789 ๐ธ 789 ;< ๐ธ ;< [๐œ“ 2๐œŠ I โˆ’ ๐œŠ, ๐œŠ E โˆ’ โ€ข ๐šฅ โƒ– = ๐‘œ๐บ ๐ท , @A ๐œ“ 2๐œŠ I โˆ’ ๐œŠ, ๐œŠ I โˆ’ ๐œ“ โˆ’๐œŠ, ๐œŠ I ] 9 P/Q . RYZ Z โ€ข where ๐œ“ ๐‘ฆ, ๐›ฝ = tanh โˆ’ tanh( 0 ) ; ๐œŠ = ๐‘œ๐บ(๐น โˆ’ ๐น ./0 )/๐‘†๐‘ˆ 9R P/Q 0 S 0 [1] A.M. Keightley, et al, J. Electroanal. Chem. 322 (1992) 25-54. Nuclear Materials and Fuel Nuclear Materials and Fuel 13 Cycle center Cycle center

  14. Determined concentration ratio Predicted coordinates of cyclic voltammetric peaks and the calculated concentration ratio. ๐’๐‘ฎ ๐‘ซ ๐…๐ฏ ๐Ÿ‘+ ๐‘ซ ๐…๐ฏ ๐Ÿ’+ .๐‘ฌ ๐…๐ฏ ๐Ÿ‘+ 0๐’‹ ๐’’ 0 ๐‘บ๐‘ผ ๐‘ซ ๐…๐ฏ๐Ÿ’+ ๐’๐‘ฎ ๐’… ) ๐‘บ๐‘ผ (๐‘ญ ๐Ÿ/๐Ÿ‘ โˆ’ ๐‘ญ ๐’’ ๐‘ซ ๐’„ . ๐‘บ๐‘ผ โˆ†๐‘ญ ๐ช ๐‘ซ ๐…๐ฏ๐Ÿ‘+ โ€  Test # ๐‘ฌ ๐…๐ฏ ๐Ÿ’+ ๐’ ๐Ÿ’ ๐‘ฎ ๐Ÿ’ ๐’˜๐‘ฌ ๐’„ - 2.236 0 0.4463 1.109 - 650ยฐC #1 2.814 1.31 0.5415 1.697 1.21 650ยฐC #2 3.102 2.13 0.5596 1.988 1.96 650ยฐC #3 3.075 2.04 0.5581 1.959 1.88 700ยฐC #1 2.855 1.42 0.5447 1.741 1.29 700ยฐC #2 3.067 2.02 0.5578 1.953 1.83 700ยฐC #3 3.119 2.18 0.5605 2.003 1.98 750ยฐC #1 2.740 1.13 0.5356 1.623 1.08 750ยฐC #2 2.674 0.98 0.5299 1.558 0.93 750ยฐC #3 2.842 1.39 0.5439 1.729 1.33 โ€ Calculated by the determined diffusion coefficient. Nuclear Materials and Fuel Nuclear Materials and Fuel 14 Cycle center Cycle center

  15. XPS examination โ€ข Eu 3+ /Eu 2+ ratio โ‰ˆ 2:1 Nuclear Materials and Fuel Nuclear Materials and Fuel 15 Cycle center Cycle center

  16. Formal potential for Eu 3+ /Eu 2+ P ๐น โˆ— = ๐น ./0 + @A ` ab Q โ€ข => ๐‘š๐‘œ ` cde Table Summary of formal standard potential from this work and references Total concentration of E * (V vs. F 2 /F - ) Temperature ( ยฐ C) Salt Source Eu in salt 550 -3.94 or -3.82 โ€  FLiNaK 0.072 mol/kg [1] 650 -3.836 ยฑ 0.005 FLiNaK 0.048 mol/kg This work 700 -3.787 ยฑ 0.009 FLiNaK 0.048 mol/kg This work 750 -3.732 ยฑ 0.006 FLiNaK 0.048 mol/kg This work 800 -3.53 ยฑ 0.01 LiF-CaF 2 0.100 mol/kg [2] 820 -3.46 ยฑ 0.01 LiF-CaF 2 0.100 mol/kg [2] 840 -3.40 ยฑ 0.01 LiF-CaF 2 0.100 mol/kg [2] 870 -3.33 ยฑ 0.01 LiF-CaF 2 0.100 mol/kg [2] [1] W. Huang, et al. Electrochimi. Acta 147 (2014) 114-120. [2] L. Massot, et al. Electrochimi. Acta 54 (2009) 6361-6366 Nuclear Materials and Fuel Nuclear Materials and Fuel 16 Cycle center Cycle center

  17. Redox potential window โ€ข Solid line: metal dissolution at limit activity of 10 -6 โ€ข Dotted line: reduction of oxidants. HF/H 2 =0.1: a mole ratio of HF/H 2 =0.1 at 1 atm total pressure โ€ข Double solid line: redox potential calculated based on measured apparent potential. All potentials calculated based on โˆ†๐ป ยฐ โ€ข of fluorides at supercooled state except gaseous MoF 5 , MoF 6 , WF 6 , and HF. Nuclear Materials and Fuel Nuclear Materials and Fuel 17 Cycle center Cycle center

  18. Acceleration mechanisms of Cr Dissolution q Galvanic Corrosion q Direct reduction of Cr 2+ Anode: Cr (alloy 1) โ†’ Cr 0Y + 2e s Cathode (Ni): Cr 0Y + 2e s โ†’ Cr (alloy 2) Cathode (graphite): Cr 0Y + 3 7 C + 2e s โ†’ 1 7 Cr v C w q Disproportionation reaction of Cr 2 + Schematic of the direct reduction of the corrosion 3Cr 0Y โ†’ 2Cr wY + Cr products on the cathode during galvanic corrosion. Ox 3Cr 0Y + 3 7 C โ†’ 2Cr wY + 1 represents the residual 7 Cr v C w oxidants. Nuclear Materials and Fuel Nuclear Materials and Fuel 18 Cycle center Cycle center

  19. Salt Purification Method q Bi-Li Extractor q Sacrificial Electrode Nuclear Materials and Fuel Nuclear Materials and Fuel 19 Cycle center Cycle center

  20. Available Fundamental data in Liquid Nuclear Materials and Fuel Nuclear Materials and Fuel 20 Cycle center Cycle center

  21. More fundamental data development based on phase diagram model Bi-Ce Nuclear Materials and Fuel Nuclear Materials and Fuel 21 Cycle center Cycle center

  22. Fundamental data of Fission products in liquid Bi-Enthalpy of mixing Bi-Ce Nuclear Materials and Fuel Nuclear Materials and Fuel 22 Cycle center Cycle center

  23. Activity coefficient of Fission products in liquid 873 K 973 K 923 K Nuclear Materials and Fuel Nuclear Materials and Fuel 23 Cycle center Cycle center

  24. Purification model for Using Bi-Li โ€š ๐‘œ E ๐‘Œ ~ โ€ข ล  โ€š ๐ธ โ€ขE โˆ’ ๐‘Œ โ€ขE โ€ข โ€š โ‚ฌโ€ขโ€ข ๐‘ โ€ขE | = ๐ถ๐‘— โ€žโ€ฆโ€ฆโ€  + ๐‘‡๐‘๐‘š๐‘ข โ€žโ€ฆโ€ฆโ€  ๐ธ ~ โ€ข ๐ถ๐‘— โ€žโ€ฆโ€ฆโ€  + ๐‘‡๐‘๐‘š๐‘ข โ€žโ€ฆโ€ฆโ€  ๐ธ โ€ขE Eโ€น. Nuclear Materials and Fuel Nuclear Materials and Fuel 24 Cycle center Cycle center

  25. One Example Nuclear Materials and Fuel Nuclear Materials and Fuel 25 Cycle center Cycle center

  26. E-pO 2- diagram development Cerium species in LiF-BeF2 at 723K 0 -0.5 -1 Ce2O3 -1.5 CeF3 E(V) -2 -2.5 Ce -3 -3.5 -4 -2 0 2 4 6 8 10 12 14 pO (2-) Plutonium species in LiF-BeF2 at 723K 0 -0.5 PuF3 -1 Pu2O3 700C in FLiBe. ๐’ƒ ๐ ๐จโ€ข of 10 -6 is used for the -1.5 calculation of related equilibrium lines E(V) -2 -2.5 Pu -3 Nuclear Materials and Fuel Nuclear Materials and Fuel -3.5 26 Cycle center Cycle center -4 -2 0 2 4 6 8 10 12 14 pO (2-)

Recommend


More recommend