The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives References 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] References 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References b. FP [ Ψ ] 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References b. FP [ Ψ ] ≈ past in the future 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References b. FP [ Ψ ] ≈ past in the future c. PFFPPFP [ Ψ ] 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References b. FP [ Ψ ] ≈ past in the future c. PFFPPFP [ Ψ ] ??? 5 / 40
The Negation Time Representation: temporal logic of Events Variant of modal logic: propositional operators & accessibility Pascal Amsili relation between worlds Introduction Davidson P [ Ψ ] = there is a world w in the past s.t. Ψ ∈ w . Initial Problem 1 Initial Problem 2 Reification (5) a. Jones loved a woman. Discussion Parsons b. P [ ∃ x woman( x ) ∧ love( j , x )] Kamp&Reyle The question Observations P [ Ψ ] = there is a world w in the future s.t. Ψ ∈ w . and arguments Complete (6) a. Jones will love a woman. Proposal b. F [ ∃ x woman( x ) ∧ love( j , x )] Conclusion & Perspectives (7) a. PP [ Ψ ] ≈ pluperfect References b. FP [ Ψ ] ≈ past in the future c. PFFPPFP [ Ψ ] ??? very powerfull (Kamp, 1979) ⇒ what about present tense? aspect? 5 / 40
The Negation Time Representation: temporalized predicates of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle (8) a. Jones loved a woman. The question b. ∃ t ∃ x t < n ∧ woman( x ) ∧ love( j , x , t ) Observations and arguments Complete I Predicates have one additional place for time Proposal Conclusion & I Underspecified role of the time argument Perspectives References 6 / 40
The Negation Time Representation: second order formulae of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons (9) a. Jones loves a woman. Kamp&Reyle The question b. ∃ t t < n holds at ( t , [ ∃ x woman( x ) ∧ love( j , x )]) Observations and arguments I usual in AI/KR Complete Proposal I too powerfull (decidability issues) Conclusion & Perspectives I many meaning postulates needed References 7 / 40
The Negation Polyadicity of Events Pascal Amsili (10) a. Jones buttered the toast Introduction Davidson b. buttered ( j , t ) Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 8 / 40
The Negation Polyadicity of Events Pascal Amsili (10) a. Jones buttered the toast Introduction Davidson b. buttered ( j , t ) Initial Problem 1 Initial Problem 2 Reification (11) a. Jones buttered the toast in the bathroom with a Discussion Parsons knife at midnight Kamp&Reyle The question b. ??? Observations and arguments Complete Proposal Conclusion & Perspectives References 8 / 40
The Negation Polyadicity of Events Pascal Amsili (10) a. Jones buttered the toast Introduction Davidson b. buttered ( j , t ) Initial Problem 1 Initial Problem 2 Reification (11) a. Jones buttered the toast in the bathroom with a Discussion Parsons knife at midnight Kamp&Reyle The question b. ??? Observations and arguments Kenny (1963) : buttered ( j , t , b , k , m ). Complete Proposal Conclusion & Perspectives References 8 / 40
The Negation Polyadicity of Events Pascal Amsili (10) a. Jones buttered the toast Introduction Davidson b. buttered ( j , t ) Initial Problem 1 Initial Problem 2 Reification (11) a. Jones buttered the toast in the bathroom with a Discussion Parsons knife at midnight Kamp&Reyle The question b. ??? Observations and arguments Kenny (1963) : buttered ( j , t , b , k , m ). Complete Proposal But we want to have (11-a) ⇒ (10-a) Conclusion & Perspectives References 8 / 40
The Negation Polyadicity of Events Pascal Amsili (10) a. Jones buttered the toast Introduction Davidson b. buttered ( j , t ) Initial Problem 1 Initial Problem 2 Reification (11) a. Jones buttered the toast in the bathroom with a Discussion Parsons knife at midnight Kamp&Reyle The question b. ??? Observations and arguments Kenny (1963) : buttered ( j , t , b , k , m ). Complete Proposal But we want to have (11-a) ⇒ (10-a) Conclusion & as well as (11-a) ⇒ (12) Perspectives References (12) a. Jones buttered the toast in the bathroom buttered ( j , t , b ) b. Jones buttered the toast with a knife buttered ( j , t , k ) c. Jones buttered the toast in the bathroom with a knife buttered ( j , t , b , k ) 8 / 40
The Negation Polyadicity II of Events Pascal Amsili Introduction Proposal (Kenny, 1963) : (10-a) shall be represented as a Davidson Initial Problem 1 5-ary predicate. In other words, (10-a) is seen as an Initial Problem 2 Reification elliptic/underspecified version of (13). Discussion Parsons Kamp&Reyle The question (13) Jones buttered the toast somewhere with something Observations at sometime. and arguments Complete Proposal Conclusion & Perspectives References 9 / 40
The Negation Polyadicity II of Events Pascal Amsili Introduction Proposal (Kenny, 1963) : (10-a) shall be represented as a Davidson Initial Problem 1 5-ary predicate. In other words, (10-a) is seen as an Initial Problem 2 Reification elliptic/underspecified version of (13). Discussion Parsons Kamp&Reyle The question (13) Jones buttered the toast somewhere with something Observations at sometime. and arguments Complete Proposal Then the wanted inferences come through. Conclusion & Perspectives References 9 / 40
The Negation Polyadicity II of Events Pascal Amsili Introduction Proposal (Kenny, 1963) : (10-a) shall be represented as a Davidson Initial Problem 1 5-ary predicate. In other words, (10-a) is seen as an Initial Problem 2 Reification elliptic/underspecified version of (13). Discussion Parsons Kamp&Reyle The question (13) Jones buttered the toast somewhere with something Observations at sometime. and arguments Complete Proposal Then the wanted inferences come through. Conclusion & But what do we do with (14)? (Davidson, 1967) Perspectives References (14) Jones buttered the toast in the bathroom with a knife at midnight by holding it between the toes of his left foot 9 / 40
The Negation Davidson’s intuition of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle The question • Individuals Observations and arguments (15) a. I bought a house Complete b. ∃ x house ( x ) Proposal Conclusion & Perspectives References 10 / 40
The Negation Davidson’s intuition of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle The question • Individuals Observations and arguments (15) a. I bought a house, it has three rooms Complete b. ∃ x house ( x ) ∧ 3 room ( x ) Proposal Conclusion & Perspectives References 10 / 40
The Negation Davidson’s intuition of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle • Individuals The question Observations and arguments (15) a. I bought a house, it has three rooms, it is Complete well-heated Proposal b. ∃ x house ( x ) ∧ 3 room ( x ) ∧ well heated ( x ) Conclusion & Perspectives References 10 / 40
The Negation Davidson’s intuition of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons • Individuals Kamp&Reyle The question Observations (15) a. I bought a house, it has three rooms, it is and arguments well-heated , and has 2 storeys Complete Proposal b. ∃ x house ( x ) ∧ 3 room ( x ) ∧ well heated ( x ) Conclusion & ∧ 2 storey ( x ) Perspectives References 10 / 40
The Negation Davidson’s intuition of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 • Individuals Reification Discussion Parsons Kamp&Reyle (15) a. I bought a house, it has three rooms, it is The question well-heated , and has 2 storeys Observations and arguments b. ∃ x house ( x ) ∧ 3 room ( x ) ∧ well heated ( x ) Complete ∧ 2 storey ( x ) Proposal Conclusion & Perspectives I (re)descriptions References I pronouns 10 / 40
The Negation Davidson’s intuition of Events Pascal Amsili • Individuals Introduction Davidson Initial Problem 1 (15) a. I bought a house, it has three rooms, it is Initial Problem 2 Reification well-heated , and has 2 storeys Discussion Parsons b. ∃ x house ( x ) ∧ 3 room ( x ) ∧ well heated ( x ) Kamp&Reyle The question ∧ 2 storey ( x ) Observations and arguments Complete I (re)descriptions Proposal Conclusion & I pronouns Perspectives References • Events (16) John did it slowly, deliberatly, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast. 10 / 40
The Negation Reification of events of Events Pascal Amsili Introduction 1. Action predicates have an additional, event, place (17). Davidson Initial Problem 1 Initial Problem 2 2. Action sentences “have an existential quantifier binding Reification Discussion the action[event] variable” (18). (Reichenbach, 1947) Parsons Kamp&Reyle The question (17) a. Kim kicked Sam. Observations b. kick ( k , s , e ) and arguments Complete (18) a. Kim kicked Sam. Proposal b. ∃ x e kick ( k , s , x e ) Conclusion & Perspectives References 11 / 40
The Negation Reification of events of Events Pascal Amsili Introduction 1. Action predicates have an additional, event, place (17). Davidson Initial Problem 1 Initial Problem 2 2. Action sentences “have an existential quantifier binding Reification Discussion the action[event] variable” (18). (Reichenbach, 1947) Parsons Kamp&Reyle The question (17) a. Kim kicked Sam. Observations b. kick ( k , s , e ) and arguments Complete (18) a. Kim kicked Sam. Proposal b. ∃ x e kick ( k , s , x e ) Conclusion & Perspectives References (19) a. A man found a coin. b. ∃ x ∃ y ∃ e man ( x ) ∧ coin ( y ) ∧ find ( x , y , e ) 11 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion Parsons Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle I What’s a sentence denotation ? The question Observations and arguments Complete Proposal Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle I What’s a sentence denotation ? t —no change The question Observations and arguments Complete Proposal Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle I What’s a sentence denotation ? t —no change The question Observations I Who denotes an event ? and arguments Complete Proposal Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle I What’s a sentence denotation ? t —no change The question Observations I Who denotes an event ? nominals (20) and arguments Complete (20) a. [ [Caesar’s death] ] = ι x dead ( x , c ) Proposal b. Caesar is dead : ∃ x dead ( x , c ) Conclusion & Perspectives References 12 / 40
The Negation Discussion of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification I Which predicates have an event-place ? Discussion many Parsons Kamp&Reyle I What’s a sentence denotation ? t —no change The question Observations I Who denotes an event ? nominals (20) and arguments Complete (20) a. [ [Caesar’s death] ] = ι x dead ( x , c ) Proposal b. Caesar is dead : ∃ x dead ( x , c ) Conclusion & Perspectives References ⇒ Syntax-semantics interface to be worked out. 12 / 40
The Negation Discussion: individuation of events of Events Pascal Amsili Introduction Davidson Initial Problem 1 Individuation at its best requires sorts or kinds that give a Initial Problem 2 Reification principle for counting. But here again, events come out Discussion Parsons well enough: rings of the bell, major wars, eclipses of the Kamp&Reyle The question moon, and performances of Lulu can be counted as easily Observations as pencils, pots, and people. Problems can arise in either and arguments domain. The conclusion to be drawn, I think, is that the Complete Proposal individuation of events poses no problems worse in Conclusion & principle than the problems posed by individuation of Perspectives material objects; and there is as good reason to believe References events exist. (Davidson, 1985, p. 180) 13 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question Observations and arguments Complete Proposal Conclusion & Perspectives References 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question I requires a richer lexicon, and an appropriate management Observations and arguments of the syntax-semantics interface Complete I solves radically the polyadicity problems, Proposal Conclusion & I and puts on a par arguments and adjuncts. Perspectives References 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question I requires a richer lexicon, and an appropriate management Observations and arguments of the syntax-semantics interface Complete I solves radically the polyadicity problems, Proposal Conclusion & I and puts on a par arguments and adjuncts. Perspectives References (23) ∃ x e kick ( x e ) agent ( x e , k ) ∧ 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question I requires a richer lexicon, and an appropriate management Observations and arguments of the syntax-semantics interface Complete I solves radically the polyadicity problems, Proposal Conclusion & I and puts on a par arguments and adjuncts. Perspectives References (23) ∃ x e kick ( x e ) agent ( x e , k ) ∧ patient ( x e , s ) ∧ 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question I requires a richer lexicon, and an appropriate management Observations and arguments of the syntax-semantics interface Complete I solves radically the polyadicity problems, Proposal Conclusion & I and puts on a par arguments and adjuncts. Perspectives References (23) ∃ x e kick ( x e ) agent ( x e , k ) ∧ patient ( x e , s ) ∧ at ( x e , 8 h ) ∧ 14 / 40
The Negation Parsons’ generalisation of Events Pascal Amsili Introduction (21) ∃ x e kick ( k , s , x e ) Davidson Initial Problem 1 Initial Problem 2 (22) ∃ x e kick ( x e ) ∧ agent ( x e , k ) ∧ patient ( x e , s ) Reification Discussion Parsons (Parsons, 1990) Kamp&Reyle The question I requires a richer lexicon, and an appropriate management Observations and arguments of the syntax-semantics interface Complete I solves radically the polyadicity problems, Proposal Conclusion & I and puts on a par arguments and adjuncts. Perspectives References (23) ∃ x e kick ( x e ) agent ( x e , k ) ∧ patient ( x e , s ) ∧ at ( x e , 8 h ) ∧ ∧ loc ( x e , in front of the house ) 14 / 40
The Negation DRT I of Events “Realistic” approach to time & event representation Pascal Amsili Introduction 1. regularisation of the stx-sem interface Davidson ⇒ Introduction of a new type. Initial Problem 1 Initial Problem 2 individuals Reification Discussion � H ������ H Parsons H Kamp&Reyle H The question H Ontology: H Observations H eventualities phys. objects ... and arguments � H H Complete � Proposal events states Conclusion & Perspectives References 15 / 40
The Negation DRT II of Events Pascal Amsili Introduction Davidson 2. Introduction of explicit “time constants” Initial Problem 1 Initial Problem 2 individuals Reification Discussion � H ����������� H Parsons H H Kamp&Reyle H The question H H Observations H H and arguments H H Ontology: Complete H Proposal eventualities phys. objects ... � H H ��� H Conclusion & � H Perspectives events states H times ... References ⇣ P ⇣⇣⇣ P P P instants/intervals 16 / 40
The Negation DRT: time constants of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle (24) Jones came at 8. The question Observations and arguments Complete Proposal Conclusion & Perspectives References 17 / 40
The Negation DRT: time constants of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle (24) Jones came at 8. The question Observations (25) a. ∃ e ( come ( j , e ) ∧ at-eight ( e )) and arguments Complete Proposal Conclusion & Perspectives References 17 / 40
The Negation DRT: time constants of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle (24) Jones came at 8. The question Observations (25) a. ∃ e ( come ( j , e ) ∧ at-eight ( e )) and arguments b. ∃ e ( come ( j , e ) ∧ at ( eight-o’clock , e )) Complete Proposal Conclusion & Perspectives References 17 / 40
The Negation DRT: time constants of Events Pascal Amsili Introduction Davidson Initial Problem 1 Initial Problem 2 Reification Discussion Parsons Kamp&Reyle (24) Jones came at 8. The question Observations (25) a. ∃ e ( come ( j , e ) ∧ at-eight ( e )) and arguments b. ∃ e ( come ( j , e ) ∧ at ( eight-o’clock , e )) Complete Proposal c. ∃ e ( come ( j , e ) ∧ at ( t , e ) ∧ t = 8-o’clock ) Conclusion & Perspectives References 17 / 40
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Construction compositionnelle ?? NP ?? λ P ( P (fred)) I VP Fred ?? V past sleep: λ e λ x ( sleep ( e , x )) sleep Fred slept.
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Construction compositionnelle IP: ∃ e ( sleep ( e , fred) ∧ past ( e )) NP ?? λ P ( P (fred)) I VP Fred ?? V past sleep: λ e λ x ( sleep ( e , x )) sleep Fred slept.
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Construction compositionnelle IP: ∃ e ( sleep ( e , fred) ∧ past ( e )) I’: λ x ( ∃ e ( sleep ( e , x ) ∧ past ( e ))) NP λ P ( P (fred)) I VP Fred ?? V past sleep: λ e λ x ( sleep ( e , x )) sleep Fred slept.
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Construction compositionnelle IP: ∃ e ( sleep ( e , fred) ∧ past ( e )) I’: λ x ( ∃ e ( sleep ( e , x ) ∧ past ( e ))) NP λ P ( P (fred)) I VP past: λ P λ x ( ∃ e ( P ( e )( x ) ∧ past ( e ))) Fred V past sleep: λ e λ x ( sleep ( e , x )) sleep Fred slept.
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Construction compositionnelle IP: ∃ e ( sleep ( e , fred) ∧ e < now) I’: λ x ( ∃ e ( sleep ( e , x ) ∧ e < now)) NP λ P ( P (fred)) I VP past: λ P λ x ( ∃ e ( P ( e )( x ) ∧ e < now)) Fred V past sleep: λ e λ x ( sleep ( e , x )) sleep Fred slept.
Approche davidsonnienne Synthèse réification des évènements réification des états formalisation à la Parsons (rôles thématiques) relations définies entre évènements (précédence, chevauchement, meet ) formellement on sait projeter une structure temporelle (sur une droite temporelle) à partir d’un groupe de relations entre evts mais en pratique on a besoin aussi de constantes temporelles on suppose donc l’existence d’une relation entre un évènement et un temps, relation sous-spécifiée en général. 1 / 2
Références Evènements et autre catégories de procès Accomplissements procès terminatif s’étalant sur une certaine durée (1-a) Achèvements procès terminatif « ponctuel » (1-b) Activités procès « homogène » non terminatif (1-c) Etats situation statique (ie non dynamique = sans changement) (1-d) (1) a. Paul a repeint sa maison. b. Paul a frappé à la porte. c. Paul travaille. d. Paul connaît l’anglais. Vendler (1957) réduction à deux catégories : state/event 1 / 3
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Aspects discursifs : enchaˆ ınement de temps verbaux PS + PS Jerry entra dans la cuisine( e 1 ). Georges le suivit( e 2 ). Il ouvrit le frigo( e 3 ). Ici on aurait la structure temporelle : e 1 < e 2 < e 3 < n
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Enchaˆ ınements : Pass´ e simple / Imparfait Kramer entra dans la cuisine( e 1 ). Il ouvrit le frigo( e 2 ). Jerry faisait la vaisselle( e 3 ). L’imparfait d´ ecrit une situation en cours de d´ eroulement par rapport ` a la narration. La structure temporelle correspondante serait : e 1 < e 2 < n ∧ e 2 inclus dans s 3 ou bien e 1 < e 2 < n ∧ e 2 “recouvre” s 3
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Enchaˆ ınement : PS/Plus que Parfait Nicolas arriva au Palais ` a 9 heures ( e 1 ). Il s’´ etait lev´ e tˆ ot ( e 2 ). Il avait r´ eveill´ e Carla ( e 3 ). Ils avaient d´ ejeun´ e ensemble ( e 4 )... Le PQP entraˆ ıne un retour en arri` ere, et la suite de PQP enchaˆ ıne ` a partir du retour en arri` ere. La structure temporelle : e 2 < e 3 < e 4 < e 1 < n
S´ emantique et interpr´ etation temporelle Temps et s´ emantique formelle Temps et n´ egation Georges n’a pas vot´ e mardi. ∃ t , x , ( mardi ( t ) ∧ t < n ∧ georges ( x ) ∧ ¬ ( ∃ e e ⊆ t ∧ voter ( e , x )) ∃ x , ( georges ( x ) ∧ ¬ ( ∃ e mardi ( t ) ∧ t < n ∧ e ⊆ t ∧ voter ( e , x ))
interpr´ etation temporelle La langue permet de d´ ecrire une succession d’´ etats, d’actions, d’´ ev´ enements et leur fa¸ con de s’organiser, avec : le temps verbal ( tense en anglais) et l’aspect ; cat´ egories lexicales des adverbes temporels : hier, le 1er f´ evrier, jeudi, la semaine prochaine, ... des pr´ epositions : avant, apr` es, depuis, dans, ... des conjonctions de subordination : quand, d` es que, avant que, apr` es le moment o` u, des adjectifs : prochain, futur, ancien des ´ ev´ enements nominaux : crise, guerre, ... tous les verbes → ajout de nouveaux types de r´ ef´ erents + pr´ edicats temporels,
S´ emantique et interpr´ etation temporelle Temps et corpus Survol Introduction 1 Temps et s´ emantique formelle 2 Temps et corpus 3 Temps et TAL 4
S´ emantique et interpr´ etation temporelle Temps et corpus Aspects empiriques passage ` a l’´ echelle : constitution de corpus sp´ ecification des informations temporelles normalisation annotation “manuelle” traitement automatique extraire des informations temporalis´ ees construire la structure temporelle d’un texte extraction d’entit´ es et de relations sp´ ecifiques probl` emes de validation
S´ emantique et interpr´ etation temporelle Temps et corpus Normalisation sp´ ecifier des annotations linguistiques : les entit´ es ` a annoter (“marquables”) les informations associ´ ees et leur forme (attributs) des relations entre entit´ es
S´ emantique et interpr´ etation temporelle Temps et corpus ISO TimeML Time mark-up language, un sous-groupe du standard ISO pour les annotations linguistiques objets marqu´ es : <EVENT> ´ eventualit´ es d´ enot´ es par verbes, noms ou adjectifs. <TIMEX> : adjoints temporels: dates, heures, dur´ ees <SIGNAL> : connecteurs, pr´ epositions relations marqu´ ees : <TLINK> : relations temporelles entre ´ ev´ enements et dates, ... <ALINK> : liens aspectuels <SLINK> : d´ ependances diverses (modalit´ es, )
S´ emantique et interpr´ etation temporelle Temps et corpus Attributs pour EVENT classe: occurrence, perception, rapport, aspect, modal, ´ etat, intention (´ etat ou action) lemme forme (verbe, nom, adjectif) temps (pour les verbes)
S´ emantique et interpr´ etation temporelle Temps et corpus Attributs TIMEX: ”Valeurs” des adverbiaux temporels Dates/Heures au format Ann´ ee-Mois-Jour [heures-minutes-secondes] ”juin 1987” → ”1987-6” ”le 3 mai” → ”XXXX-5-3”” symboles pour r´ ef´ erence sans dates ou heures pr´ ecises (matin, hiver, weekend, ...) ”le printemps 2005” : 2005-SP Dur´ ees: ”P”[period]+ unit´ e + valeurs ”3 jours” = ”P3D” autres attributs: modificateurs (environ, moins/plus de, d´ ebut/milieu/fin), d´ ebut et fin pour les dur´ ees
Exemple Un homme, <EVENT class="OCCURRENCE" eid="e1">bless´ e</EVENT> par une arme ` a feu, a ´ et´ e <EVENT class="OCCURRENCE" eid="e2">secouru</EVENT> par les pompiers de Grandvillars et <EVENT class="OCCURRENCE" eid="e3">transport´ e</EVENT> au centre hospitalier de Belfort dans un ´ etat grave, <TIMEX3 anchorTimeID="t1" temporalFunction="TRUE" tid="t2" type="DATE" value="1999-05-18">mardi</TIMEX3> <SIGNAL sid="s1">vers</SIGNAL> <TIMEX3 tid="t3" type="TIME" value="1999-05-18T21:45">21 h 45 </TIMEX3>.
S´ emantique et interpr´ etation temporelle Temps et corpus Relations Di ff ´ erentes classes d’´ ev´ enements et de liens entre ´ ev´ enements occurrences (´ ev´ enements r´ ealis´ es) : liens temporels (”TLINK” en TimeML) liens aspectuels: commencer ` a parler , arrˆ eter de parler (”ALINK” dans TimeML) autres liens: oublier de faire la vaisselle / regretter de faire la vaisselle (”SLINK” dans TimeML)
S´ emantique et interpr´ etation temporelle Temps et corpus Relations: Datation ou Ancrage des ´ ev´ enements ? L’ancrage est plus g´ en´ eral. Le pr´ esident a ´ et´ e ´ elu le 21 avril. (date pr´ ecise disponible) Peu apr` es sa popularit´ e a chut´ e. (relation temporelle) Mani, Schi ff man (2003,2005): ´ ev´ enement ”before”/”at”/”after”/? une date → pas de di ff ´ erence entre relations ´ evenement/´ ev´ enement ou ´ ev´ enement/dates
S´ emantique et interpr´ etation temporelle Temps et corpus L’ordre des ´ ev´ enements Quelles relations choisir pour exprimer l’ordre temporel ? Comment mesurer l’accord entre deux descriptions de relations ? exemple avec ”avant” et ”pendant” e1 avant e3, e2 avant e3, e2 pendant e1 e1 avant e3, e2 pendant e1 e2 pendant e1, e3 apr` es e1 besoin de relations ”bien d´ efinies” besoin d’un mod` ele d’inf´ erence associ´ e aux relations : e1 avant e3, e2 pendant e1 → e2 pendant e1 ... relations entre intervalles temporels
S´ emantique et interpr´ etation temporelle Temps et corpus Relation entre intervalles en consid´ erant les relations possibles entre bornes, 13 relations, restreintes ` a 11 dans TimeML : BEFORE / AFTER IAFTER / IBEFORE INCLUDES / IS INCLUDED BEGINS / BEGUN BY ENDED BY / ENDS SIMULTANEOUS + OVERLAPS/ OVERLAPPED BY [NB: noms di ff ´ erents dans [Allen 83] et TimeML, mais s´ emantique identique]
S´ emantique et interpr´ etation temporelle Temps et corpus Liens modaux SLINK MODAL (pouvoir, devoir, etc) EVIDENTIAL (a ffi rmer) NEG EVIDENTIAL (nier) FACTIVE (regretter) COUNTER FACTIVE (oublier) CONDITIONAL s´ emantique moins bien d´ efinie “valeurs” possibles des modalit´ es non prises en compte (´ epist´ emiques/obligations) pour l’instant
S´ emantique et interpr´ etation temporelle Temps et corpus Liens aspectuels ALINK INITIATES CULMINATES TERMINATES CONTINUES REINITIATES s´ emantique : relations entre intervalles ou bien non d´ efinie
S´ emantique et interpr´ etation temporelle Temps et corpus Quelques corpus TimeBank : sur l’anglais, d´ epˆ eches d’agence 200 textes environ beaucoup de bruit: incoh´ erence, h´ et´ erog´ en´ eit´ e accord moyen sur le fran¸ cais, donn´ ees ´ eparses collect´ ees sur d´ epˆ eches d’agence, biographies, textes historiques (Baldwin, Bittar, Denis, Gagnon, Muller, Tannier) en cours de normalisation, th` ese d’Andr´ e Bittar mˆ eme probl` eme d’accord que TimeBank: distinction de relations souvent di ffi ciles distinctions admises en s´ emantique formelle irr´ ealistes ` a ce stade tˆ ache tr` es coˆ uteuse ressources disponibles http://www.timeml.org/tempeval2/ (+ autres langues)
S´ emantique et interpr´ etation temporelle Temps et corpus Quelques corpus TimeBank : sur l’anglais, d´ epˆ eches d’agence 200 textes environ beaucoup de bruit: incoh´ erence, h´ et´ erog´ en´ eit´ e accord moyen sur le fran¸ cais, donn´ ees ´ eparses collect´ ees sur d´ epˆ eches d’agence, biographies, textes historiques (Baldwin, Bittar, Denis, Gagnon, Muller, Tannier) en cours de normalisation, th` ese d’Andr´ e Bittar mˆ eme probl` eme d’accord que TimeBank: distinction de relations souvent di ffi ciles distinctions admises en s´ emantique formelle irr´ ealistes ` a ce stade tˆ ache tr` es coˆ uteuse ressources disponibles http://www.timeml.org/tempeval2/ (+ autres langues)
S´ emantique et interpr´ etation temporelle Temps et TAL Survol Introduction 1 Temps et s´ emantique formelle 2 Temps et corpus 3 Temps et TAL 4
S´ emantique et interpr´ etation temporelle Temps et TAL Traitement automatique extraire des informations temporalis´ ees construire la structure temporelle d’un texte extraction d’entit´ es et de relations sp´ ecifiques
S´ emantique et interpr´ etation temporelle Temps et TAL Extraction d’informations temporalis´ ees essentiellement: EVENT, TIMEX, et liens EVENT/TIMEX ` a trouver : ´ etendue + attributs s´ emantiques m´ ethodes principales: patrons lexico-syntaxiques ´ evaluation: pr´ ecision et rappel
S´ emantique et interpr´ etation temporelle Temps et TAL Approche typique en IE pr´ etraitements : d´ ecoupage en phrase, tokeniseur projection de lexiques sp´ ecifiques (ici: noms de jours, mois, etc) ´ etiquettage en parties de discours, ´ eventuellement analyse syntaxique superficielle patrons lexicaux-syntaxiques (cascades) s´ emantique ad hoc plate-formes d’int´ egration pour faire des chaˆ ınes de traitement (GATE, UIMA)
S´ emantique et interpr´ etation temporelle Temps et TAL Exemple avec un lexique qui recense les classes ordinal et siecle {Modifpp})?:mod (ordinal):n (siecle):u) :match --> :match.TIMEX3={type="DATE",subtype="abs", mod=:mod.Modifpp.mod, unit=:u.Lookup.val, century=:n.Lookup.val, } “A la fin du XIXe si` ecle”
Recommend
More recommend