rice ghg emissions under varied
play

Rice GHG Emissions under varied Nitrogen, Variety, and Water - PowerPoint PPT Presentation

Rice GHG Emissions under varied Nitrogen, Variety, and Water Management PAST WORK PRESENT CHALANGES FUTURE - NEEDS Merle Anders Net Profit Crop Consultant PLlc RiceCarbon@centurylink.net 870-456-8527 PLANTS DONT LIE V. 2.4


  1. Rice GHG Emissions under varied Nitrogen, Variety, and Water Management PAST – WORK PRESENT – CHALANGES FUTURE - NEEDS Merle Anders Net Profit Crop Consultant PLlc RiceCarbon@centurylink.net 870-456-8527

  2. PLANTS DON’T LIE V. 2.4

  3. Nitrogen fertility CLXL 745 Rates: 0, 112, 168, 224 kg N ha -1 as Urea; single pre-flood % kg CH 4 - kg CO 2 g N 2 O-N kg CO 2 Fert. kg N ha -1 C ha -1 eq ha -1 ha -1 eq ha -1 Emis. 112 41 a 1375 a 69 bc 33 bc 0.037 168 46 a 1550 a 161 b 76 b 0.080 224 40 a 1336 a 336 a 157 a 0.138

  4. Nitrogen fertility N 2 O emis emissions ions Rice yields ice yields 50 40 -1 g N 2 O-N Mg 30 20 10 0 -150 -100 -50 0 50 100 150 Yield N surplus (kg N ha -1 ) 112 kg N ha -1 Adviento-Borbe, M.A., C.M. Pittelkow, M. Anders, C. Van Kessel, J.E. Hill, A.M. McClung, J. Six, and B.A. Linquist. 2013. Optimal fertilizer nitrogen rates and yield-scaled global warming potential in drill seeded rice. J. Evron. Qual., 42:6: 1623-1634 .

  5. Variety Total CH 4 Total N 2 O Yield-scaled emissions emissions GWP GWP g CH 4 -C ha -1 g N 2 O-N ha -1 kg CO 2 eq Mg -1 Rice kg CO 2 eq Grain Yield ha -1 season -1 season -1 season -1 Mg ha -1 season -1 Variety CLXL 745 52874 20 1775 9.52 186 Jupiter 70411 0 2351 8.18 287 Sabine 64499 26 2166 6.17 351 Francis 80980 23 2715 7.39 368 Simmonds, M., M. Anders, M.A. Adviento-Bore, C. van Kessel, A. McClung, B. Linquist. 2015. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct- seeded systems. J. Environ. Qual., 44:103-114.

  6. CH 4 emission, CH 4 -C g ha -1 d -1 N 2 O emission, N 2 O-N g ha -1 d -1 May 01 May 01 1000 1500 2000 2500 3000 3500 4000 500 10 20 30 40 50 0 0 May 16 May 16 May 31 May 31 Jun 15 Jun 15 Variety Jun 30 Jun 30 Jul 15 Jul 15 Jul 30 Jul 30 Aug 14 Aug 14 Aug 29 Aug 29 Sep 13 Sep 13 Sabine CLX 745 Francis Jupiter Sep 28 Sep 28 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 o o

  7. Water Study design and data collection 1. Location: Rice Research and Extension Center, Stuttgart AR a. DeWitt Silty Clay Loam soil (fine, smectitic, thermic, Typic Albaqualf) b. pH 5.6-6.2, Carbon 8.4g C kg -1 soil, Nitrogen 0.6 g N kg -1 soil 2. Four replications with 4 water treatments one hybrid (CLXL745) a. Flood, AWD/40-flood, AWD/60, AWD/40 b. AWD = alternate wetting and drying; /value= percent of saturated soil c. AWD/40-flood changed at R1-R2; Dynamax probe used d. Field flooded to 10- cm, natural dry, soil moisture determined when field “dry” e. Moisture measurements made to 50-mm; 4 plot -1 ; averaged across reps. f. N rate of 134 kg ha -1 on all treatments as pre-flood (15-20 day hold) g. Irrigation water measured with McCrometer flow meter 3. GHG measurements using 30.48-cm static vented chamber technique a. Collected at 0, 20, 40, 60-min intervals b. Frequency dictated by field management activities and weather

  8. Results for grain yield 2012 ,2013 rice soybean 2013 continuous rice Rice grain yields (Mg ha -1 ) Water treatment 2012-RS 2013-RS 2013-RR Mean Flood 9.78 a 11.15 a 9.84 a 10.26 a AWD/40 – Flood 9.27 a 11.15 a 10.33 a 10.17 ab AWD/60 9.22 a 10.37 b 9.61 a 9.73 b AWD/40 9.03 a 9.58 c 8.31 b 8.97 c

  9. Results for water use 2012 ,2013 rice soybean 2013 continuous rice Irrigation water use (m 3 ha -1 ) water use efficiency (WUE = kg rice/m 3 ) 2012-RS 2013-RS 2013-RR Mean Water treatment Use WUE Use WUE Use WUE Use WUE 7617 7617 7939 1.30 Flood 1.28 1.46 8582 1.15 (718) (1077) 6602 6475 AWD/40 – Flood 6512 1.58 1.40 1.72 6459 1.60 (359) (538) 6475 5840 5452 1.86 AWD/60 1.42 1.78 4040 2.38 (180) (0) 5078 5205 4438 2.12 AWD/40 1.78 1.84 3030 2.74 (359) (180)

  10. Results for gas emissions 2012 ,2013 rice soybean 2013 continuous rice CH 4 N 2 O GWP Water management kg CH 4 -C ha -1 kg N 2 O-N ha -1 kg CO 2 eq ha -1 kg CO 2 eq Mg -1 2012 Rice-soybean 249 a Flood 71.0 a 0.031 a 2385 a AWD/40 – flood 145 b 37.2 b 0.104 b 1292 b 23 c AWD/60 2.8 c 0.229 c 201 c AWD/40 1.7 c 0.137 b 120 c 14 c 2013 Rice-soybean Flood 100 a 0.07 b 3371 a 301 a AWD/40 – flood 181 b 56.7 b 0.39 a 2076 b 36 c AWD/60 6.04 c 0.40 a 389 c 72 c AWD/40 7.80 c 1.05 a 751 c 2013 Rice-rice 476 a Flood 144 a -0.008 b 4804 a AWD/40 – flood 71.4 b 0.028 b 2397 b 235 b AWD/60 11.8 c 0.198 ab 486 c 50 c 69 c AWD/40 13.7 c 0.329 a 611 c

  11. Results for gas emissions 2013 rice soybean 250 -1 d -1 45 200 40 N 2 O emission, N 2 O-N g ha Air temperature, oC 35 150 30 Flooded 25 Intermittent_60 Intermittent_40 100 20 Intermittent_40-Flooded 10 50 5 0 0 -5 -10 -50 -15 Apr 01 13 Apr 16 13 May 01 13 May 16 13 May 31 13 Jun 15 13 Jun 30 13 Jul 15 13 Jul 30 13 Aug 14 13 Aug 29 13 Sep 13 13 Sep 28 13 Oct 13 13 Oct 28 13 4500 -1 d -1 45 4000 40 CH 4 emission, CH 4 -C g ha 3500 Air temperature, oC 35 3000 30 2500 25 2000 20 10 1500 5 1000 0 500 -5 0 -10 -500 -15 Apr 01 13 Apr 16 13 May 01 13 May 16 13 May 31 13 Jun 15 13 Jun 30 13 Jul 15 13 Jul 30 13 Aug 14 13 Aug 29 13 Sep 13 13 Sep 28 13 Oct 13 13 Oct 28 13

  12. Results for gas emissions 2013 rice soybean 180 Flooded Soil water content CH 4 150 0.4 N 2 O Soil water content, m3 m-3 -1 day -1 120 0.3 90 kg CO 2 eq ha 60 0.2 30 0.1 0 0.0 AWD/60 30 0.4 Soil water content, m3 m-3 -1 day -1 20 0.3 kg CO 2 eq ha 0.2 10 0.1 0 0.0 AWD/40 30 0.4 Soil water content, m3 m-3 -1 day -1 20 0.3 kg CO 2 eq ha 0.2 10 0.1 0 0.0 May 25 Jun 01 Jun 08 Jun 15 Jun 22 Jun 29 Jul 06 Jul 13 Jul 20 Jul 27 Aug 03 Aug 10 Aug 17 Aug 24 Aug 31 Sep 07 Time

  13. Results 1. Water use efficiency improved 18 to 63% 2. GHG emissions reduced by 48 to 63% 3. Arsenic reduced by 63% 4. GHG emission levels less than reported for corn or wheat 5. Nitrogen efficiency was not reduced 6. Rotation differences in GHG were evident 7. Adoption determined by cost savings and carbon market Linquist, B.A., M. Anders, M.A. Adviento-Bore, R.L. Chaney, L.L. Nalley, E. da Rosa, and C. van Kessel. 2014. Reducing greenhouse gas emissions, water use and grain arsenic levels in rice systems. Global Change Biology, doi: 10.1111/gcb.12701.

  14. Results Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi Joseph H. Massey a, ∗ , Tim W. Walker a, Merle M. Anders b, M. Cade Smitha, Luis A. Avila c http://dx.doi.org/10.1016/j.agwat.2014.08.023 0378-3774/Published by Elsevier B.V. The Economic Viability of Alternative Wetting and Drying Irrigation in Arkansas Rice Production Lanier Nalley,* Bruce Lindquist, Kent Kovacs, and Merle Anders Published in Agron. J. 107:1 – 9 (2015) doi:10.2134/agronj14.0468 Impact of production practices on physicochemical properties of rice grain quality Rolfe J Bryant,a ∗ Merle Andersb and Anna McClunga (wileyonlinelibrary.com) DOI 10.1002/jsfa.4608

  15. Results Nitrogen uptake under alternate wetting and drying water management Anders, M.M. et al. Water management impacts rice methylmercury and the soil microbiome Sarah E. Rothenberga,*, Merle Andersb, Nadim J. Ajamic, Joseph F. Petrosinoc, Erika Baloghd Accepted Science of the Total Environment The influence of water management on arsenic uptake in rice grain and aquaporin expression in rice roots Sarah E. Rothenberg a,*, Merle Anders b, Leah B. Schmalfuss a, Erika Balogh c, William J. Jones a, Brian Jackson d Rice grain yield and quality when grown under limited water conditions. Anders, M.M., R.J. Bryant, K.M. Yeater, S. Brooks, and A. M. McClung.

  16. Moving forward? WHAT DO WE KNOW: VERY LITTLE (LESS) GENETICS: 1. Mechanisms of methane production? 2. Improved drought stress and associated traits? NU NUMBER ER 1 WI WILL NEV NEVER ER RESUL ESULT T IN N INC NCREA EASED SED WA WATER TER INV INVENT ENTOR ORY OF OF GHG GHG EMI EMISS SSION IONS S IN MA IN MAJOR OR VARIETIES IETIES/HY /HYBRID IDS

  17. Moving forward? SCAL SCALE E RESU RESULTS TS TO COM COMMER ERCIA CIAL FIELD FIELDS MANAGEMENT: 1. How dry do we need to be? 2. When do we need to be drier or wetter? 3. How do we measure soil moisture for management? 4. GHG emission levels in row rice? 5. Added N 2 O measurements to field scale measurements? 6. Include other disciplines such as microbiologists? RCPP, Climate Change Initiative, NRCS changes http://www.sustainablerice.org/

  18. QUESTIONS

Recommend


More recommend