T RUTH J USTICE A LGOS Social Choice II: Implicit Utilitarian Voting Teachers: Ariel Procaccia (this time) and Alex Psomas
REMINDER: THE VOTING MODEL โข Set of voters ๐ = {1, โฆ , ๐} โข Set of alternatives ๐ต ; denote |๐ต| = ๐ โข Each voter has a ranking ๐ ๐ โ L over the alternatives; ๐ฆ โป ๐ ๐ง means that voter ๐ prefers ๐ฆ to ๐ง โข A preference profile ๐ โ L ๐ is a collection of all votersโ rankings โข A voting rule is a function ๐: L ๐ โ ๐ต
UTILITIES AND WELFARE โข The voting model assumes ordinal preferences, but it is plausible that they are derived from underlying cardinal preferences โข Assume that each voter ๐ has a utility function ๐ฃ ๐ : ๐ต โ [0,1] , such that ฯ ๐ฆโ๐ต ๐ฃ ๐ ๐ฆ = 1 โข Voter ๐ reports a ranking ๐ ๐ that is consistent with his utility function, denoted ๐ฃ ๐ โณ ๐ ๐ : ๐ฆ โป ๐ ๐ง โ ๐ฃ ๐ ๐ฆ โฅ ๐ฃ ๐ (๐ง) โข As usual, the (utilitarian) social welfare of ๐ฆ โ ๐ต is = ฯ ๐โ๐ ๐ฃ ๐ (๐ฆ) sw ๐ฆ, ๐ โข Our goal is choose an alternative that maximizes social welfare, even though we cannot observe the utilities directly
DISTORTION โข We want to quantify how much social welfare a voting rule loses due to lack of information โข The distortion of voting rule ๐ on ๐ is ๐ฆโ๐ต sw (๐ฆ,๐) max dist ๐, ๐ = max sw (๐(๐),๐) ๐ โณ ๐ โข The distortion of voting rule ๐ is dist ๐ = max dist ๐, ๐ ๐
DISTORTION โข Consider the preference profile 1 2 3 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ? Poll 1 Distortion of Borda count on this profile? โข 3/2 โข 2 โข 5/3 โข 5/2
DISTORTION โข Consider the preference profile 1 2 โฆ ๐ โ 1 ๐ 1 ๐ 2 โฆ ๐ ๐โ1 ๐ฆ ๐ฆ โฆ ๐ฆ โฎ โฎ โฆ โฎ ? Poll 2 Distortion of plurality on this profile? โข ฮ(1) โข ฮ(๐) โข ฮ ๐ 2 โข ฮ ๐
DETERMINISTIC LOWER BOUND โข Theorem: Any deterministic voting rule ๐ has distortion at least ๐ โข Proof: โฆ Partition ๐ into two subsets with ๐ ๐ = ๐/2 , and let the profile ๐ be such that voters in ๐ 1 rank ๐ 1 first, and voter in ๐ 2 rank ๐ 2 first โฆ W.l.o.g. ๐ ๐ = ๐ 1 โฆ Let ๐ฃ ๐ ๐ 2 = 1 , ๐ฃ ๐ ๐ ๐ = 0 for ๐ โ ๐ 2 , ๐ฃ ๐ ๐ ๐ = 1/๐ for all ๐ โ ๐ 1 โฆ It holds that ๐ 2 dist ๐, ๐ โฅ = ๐ โ ๐ 2๐
RANDOMIZED UPPER BOUND โข Under the harmonic scoring rule, each voter gives 1/๐ points to alternative ranked ๐ -th โข Denote the score of ๐ฆ under ๐ as sc ๐ฆ, ๐ โข Why is this useful? Because sw ๐ฆ, ๐ โค sc ๐ฆ, ๐ for any ๐ฏ โณ ๐ โข Theorem [Caragiannis et al. 2015]: The randomized voting rule that, with prob. ยฝ, selects ๐ฆ โ ๐ต with prob. proportional to sc(๐ฆ, ๐) , and selects a uniformly random alternative with prob. ยฝ, has distortion ๐ ๐ log ๐ โข Discussion: In what sense is this result practical?
PROOF OF THEOREM โข Case 1: The welfare-maximizing ๐ฆ โ satisfies sw ๐ฆ โ , ๐ โฅ ๐ (ln ๐ + 1)/๐ โข Then sc ๐ฆ โ , ๐ โฅ ๐ (ln ๐ + 1)/๐ ๐ โข ฯ ๐ฆโ๐ต sc ๐ฆ, ๐ = ๐ ฯ ๐=1 1/๐ โค ๐(ln ๐ + 1) โข ๐ฆ โ is selected with prob. at least ๐ ln ๐ + 1 1 1 ๐ 2 โ ๐ ln ๐ + 1 = 2 ๐ (ln ๐ + 1) โข Now, โฅ Pr ๐ ๐ = ๐ฆ โ sw ๐ฆ โ , ๐ ๐ฝ[sw ๐ ๐ , ๐ 1 sw ๐ฆ โ , ๐ โฅ 2 ๐ (ln ๐ + 1)
PROOF OF THEOREM โข Case 2: For every ๐ฆ โ ๐ต it holds that sw ๐ฆ, ๐ < ๐ (ln ๐ + 1)/๐ โข Uniformly random selection gives expected social welfare 1 1 ๐ฃ ๐ ๐ฆ = 1 1 = ๐ ๐ เท เท ๐ เท เท ๐ฃ ๐ (๐ฆ) 2 2 2๐ ๐ฆโ๐ต ๐โ๐ ๐โ๐ ๐ฆโ๐ต โข Distortion is at most ๐ ln ๐ + 1 sw(๐ฆ โ , ๐) ๐ โค = 2 ๐(ln ๐ + 1) โ ๐ ๐ฝ sw ๐ ๐ , ๐ 2๐
RANDOMIZED LOWER BOUND โข Theorem [Caragiannis et al. 2012]: Any randomized voting rule ๐ has distortion ฮฉ ๐ โข Proof: โฆ Partition ๐ into subsets with ๐ ๐ = ๐/ ๐ , and let the profile be ๐ ๐ ๐ 1 ๐ 2 โฆ ๐ ๐ ๐ 1 ๐ 2 โฆ โฎ โฎ โฎ โฎ 1 โฆ W.l.o.g. ๐ 1 is selected with prob. โค ๐ โฆ Let ๐ฃ ๐ ๐ 1 = 1 , ๐ฃ ๐ ๐ ๐ = 0 for ๐ โ ๐ 1 , ๐ฃ ๐ ๐ ๐ = 1/๐ otherwise โฆ ๐/ ๐ โค sw ๐ 1 , ๐ โค 2๐/ ๐ , whereas sw ๐ ๐ , ๐ โค ๐/๐ for ๐ โ 1 โฆ Distortion is at least ๐ ๐ ๐ โฅ โ 1 ๐ โ 2๐ ๐ + 1 โ 1 ๐ โ ๐ 3 ๐
PARTICIPATORY BUDGETING Porto Alegre Paris Madrid New York Brazil France Spain USA Since 1989 โฌ100M (2016) โฌ24M (2016) $40M (2017)
THE MODEL โข The total budget is ๐ถ โข Each alternative ๐ฆ has a cost ๐ ๐ฆ โข For ๐ โ ๐ต , the cost ๐(๐) is additive โข Utilities are also additive, that is, ๐ฃ ๐ ๐ = ฯ ๐ฆโ๐ ๐ฃ ๐ (๐ฆ) โข The goal is to find ๐ โ ๐ต that maximizes the social welfare sw ๐, ๐ = ฯ ๐โ๐ ๐ฃ ๐ (๐) subject to the budget constraint ๐ ๐ โค ๐ถ
INPUT FORMATS Ranking Knapsack Budget by value voting โป โป โป 9 Ranking Threshold Threshold by VFM approval โป โป โป 5 Utility 3 Utility 6 Utility 2 Utility 8 Cost 6 Cost 2 Cost 1 Cost 9
DISTORTION REDUX โข Distortion allows us to objectively compare input formats, by associating an input format with the distortion of the best voting rule โข Theorem [Benade et al. 2017]: Any randomized voting rule has distortion at least ฮฉ(๐) under knapsack votes โข Proof: โฆ Let ๐ถ = 1 , ๐ ๐ ๐ = 1 for all ๐ ๐ โ ๐ต โฆ Define ๐ : For each ๐ ๐ โ ๐ต we have ๐/๐ voters ๐ ๐ who choose ๐ฆ โฆ W.l.o.g. ๐ 1 is selected with prob. โค 1/๐ , then let ๐ฃ ๐ ๐ 1 = 1 for all ๐ โ ๐ 1 , and ๐ฃ ๐ ๐ ๐ = ๐ฃ ๐ ๐ 1 = 1/2 for all ๐ โ ๐ ๐ , ๐ โ 1 โ
RANDOMIZED BOUNDS เทฉ Ranking by value ฮ ๐ $ เทฉ Ranking by VFM ฮ ๐ ฮ(๐) Knapsack voting Threshold approval ๐(log 2 ๐) [Benade et al., 2017]
METRIC PREFERENCES โข Assume a metric space with metric ๐ on space of voters and alternatives โข Preferences are defined by ๐ ๐, ๐ฆ < ๐ ๐, ๐ง โ ๐ฆ โป ๐ ๐ง โข Now we want to minimize the social cost, defined as sc ๐ฆ, ๐ = ฯ ๐โ๐ ๐(๐, ๐ฆ) ๐ ๐ ๐ โป ๐ โป ๐ ๐
LOWER BOUND โข Theorem [Anshelevich et al. 2015]: The distortion of any deterministic rule under metric preferences is at least 3 โข Proof: โข Theorem [Anshelevich et al. 2015]: The distortion of Copeland under metric preferences is at most 5
Recommend
More recommend