reminder the voting model
play

REMINDER: THE VOTING MODEL Set of voters = {1, , } Set of - PowerPoint PPT Presentation

T RUTH J USTICE A LGOS Social Choice II: Implicit Utilitarian Voting Teachers: Ariel Procaccia (this time) and Alex Psomas REMINDER: THE VOTING MODEL Set of voters = {1, , } Set of alternatives ; denote || =


  1. T RUTH J USTICE A LGOS Social Choice II: Implicit Utilitarian Voting Teachers: Ariel Procaccia (this time) and Alex Psomas

  2. REMINDER: THE VOTING MODEL โ€ข Set of voters ๐‘‚ = {1, โ€ฆ , ๐‘œ} โ€ข Set of alternatives ๐ต ; denote |๐ต| = ๐‘› โ€ข Each voter has a ranking ๐œ ๐‘— โˆˆ L over the alternatives; ๐‘ฆ โ‰ป ๐‘— ๐‘ง means that voter ๐‘— prefers ๐‘ฆ to ๐‘ง โ€ข A preference profile ๐‰ โˆˆ L ๐‘œ is a collection of all votersโ€™ rankings โ€ข A voting rule is a function ๐‘”: L ๐‘œ โ†’ ๐ต

  3. UTILITIES AND WELFARE โ€ข The voting model assumes ordinal preferences, but it is plausible that they are derived from underlying cardinal preferences โ€ข Assume that each voter ๐‘— has a utility function ๐‘ฃ ๐‘— : ๐ต โ†’ [0,1] , such that ฯƒ ๐‘ฆโˆˆ๐ต ๐‘ฃ ๐‘— ๐‘ฆ = 1 โ€ข Voter ๐‘— reports a ranking ๐œ ๐‘— that is consistent with his utility function, denoted ๐‘ฃ ๐‘— โŠณ ๐œ ๐‘— : ๐‘ฆ โ‰ป ๐‘— ๐‘ง โ‡’ ๐‘ฃ ๐‘— ๐‘ฆ โ‰ฅ ๐‘ฃ ๐‘— (๐‘ง) โ€ข As usual, the (utilitarian) social welfare of ๐‘ฆ โˆˆ ๐ต is = ฯƒ ๐‘—โˆˆ๐‘‚ ๐‘ฃ ๐‘— (๐‘ฆ) sw ๐‘ฆ, ๐’— โ€ข Our goal is choose an alternative that maximizes social welfare, even though we cannot observe the utilities directly

  4. DISTORTION โ€ข We want to quantify how much social welfare a voting rule loses due to lack of information โ€ข The distortion of voting rule ๐‘” on ๐‰ is ๐‘ฆโˆˆ๐ต sw (๐‘ฆ,๐’—) max dist ๐‘”, ๐‰ = max sw (๐‘”(๐‰),๐’—) ๐’— โŠณ ๐‰ โ€ข The distortion of voting rule ๐‘” is dist ๐‘” = max dist ๐‘”, ๐‰ ๐‰

  5. DISTORTION โ€ข Consider the preference profile 1 2 3 ๐‘ ๐‘ ๐‘ ๐‘‘ ๐‘‘ ๐‘ ๐‘ ๐‘ ๐‘‘ ? Poll 1 Distortion of Borda count on this profile? โ€ข 3/2 โ€ข 2 โ€ข 5/3 โ€ข 5/2

  6. DISTORTION โ€ข Consider the preference profile 1 2 โ€ฆ ๐‘› โˆ’ 1 ๐‘ 1 ๐‘ 2 โ€ฆ ๐‘ ๐‘›โˆ’1 ๐‘ฆ ๐‘ฆ โ€ฆ ๐‘ฆ โ‹ฎ โ‹ฎ โ€ฆ โ‹ฎ ? Poll 2 Distortion of plurality on this profile? โ€ข ฮ˜(1) โ€ข ฮ˜(๐‘›) โ€ข ฮ˜ ๐‘› 2 โ€ข ฮ˜ ๐‘›

  7. DETERMINISTIC LOWER BOUND โ€ข Theorem: Any deterministic voting rule ๐‘” has distortion at least ๐‘› โ€ข Proof: โ—ฆ Partition ๐‘‚ into two subsets with ๐‘‚ ๐‘™ = ๐‘œ/2 , and let the profile ๐‰ be such that voters in ๐‘‚ 1 rank ๐‘ 1 first, and voter in ๐‘‚ 2 rank ๐‘ 2 first โ—ฆ W.l.o.g. ๐‘” ๐‰ = ๐‘ 1 โ—ฆ Let ๐‘ฃ ๐‘— ๐‘ 2 = 1 , ๐‘ฃ ๐‘— ๐‘ ๐‘˜ = 0 for ๐‘— โˆˆ ๐‘‚ 2 , ๐‘ฃ ๐‘— ๐‘ ๐‘˜ = 1/๐‘› for all ๐‘— โˆˆ ๐‘‚ 1 โ—ฆ It holds that ๐‘œ 2 dist ๐‘”, ๐‰ โ‰ฅ = ๐‘› โˆŽ ๐‘œ 2๐‘›

  8. RANDOMIZED UPPER BOUND โ€ข Under the harmonic scoring rule, each voter gives 1/๐‘™ points to alternative ranked ๐‘™ -th โ€ข Denote the score of ๐‘ฆ under ๐‰ as sc ๐‘ฆ, ๐‰ โ€ข Why is this useful? Because sw ๐‘ฆ, ๐’— โ‰ค sc ๐‘ฆ, ๐‰ for any ๐ฏ โŠณ ๐‰ โ€ข Theorem [Caragiannis et al. 2015]: The randomized voting rule that, with prob. ยฝ, selects ๐‘ฆ โˆˆ ๐ต with prob. proportional to sc(๐‘ฆ, ๐‰) , and selects a uniformly random alternative with prob. ยฝ, has distortion ๐‘ƒ ๐‘› log ๐‘› โ€ข Discussion: In what sense is this result practical?

  9. PROOF OF THEOREM โ€ข Case 1: The welfare-maximizing ๐‘ฆ โˆ— satisfies sw ๐‘ฆ โˆ— , ๐’— โ‰ฅ ๐‘œ (ln ๐‘› + 1)/๐‘› โ€ข Then sc ๐‘ฆ โˆ— , ๐‰ โ‰ฅ ๐‘œ (ln ๐‘› + 1)/๐‘› ๐‘› โ€ข ฯƒ ๐‘ฆโˆˆ๐ต sc ๐‘ฆ, ๐‰ = ๐‘œ ฯƒ ๐‘™=1 1/๐‘™ โ‰ค ๐‘œ(ln ๐‘› + 1) โ€ข ๐‘ฆ โˆ— is selected with prob. at least ๐‘œ ln ๐‘› + 1 1 1 ๐‘› 2 โ‹… ๐‘œ ln ๐‘› + 1 = 2 ๐‘› (ln ๐‘› + 1) โ€ข Now, โ‰ฅ Pr ๐‘” ๐‰ = ๐‘ฆ โˆ— sw ๐‘ฆ โˆ— , ๐’— ๐”ฝ[sw ๐‘” ๐‰ , ๐’— 1 sw ๐‘ฆ โˆ— , ๐’— โ‰ฅ 2 ๐‘› (ln ๐‘› + 1)

  10. PROOF OF THEOREM โ€ข Case 2: For every ๐‘ฆ โˆˆ ๐ต it holds that sw ๐‘ฆ, ๐’— < ๐‘œ (ln ๐‘› + 1)/๐‘› โ€ข Uniformly random selection gives expected social welfare 1 1 ๐‘ฃ ๐‘— ๐‘ฆ = 1 1 = ๐‘œ ๐‘› เท เท ๐‘› เท เท ๐‘ฃ ๐‘— (๐‘ฆ) 2 2 2๐‘› ๐‘ฆโˆˆ๐ต ๐‘—โˆˆ๐‘‚ ๐‘—โˆˆ๐‘‚ ๐‘ฆโˆˆ๐ต โ€ข Distortion is at most ๐‘œ ln ๐‘› + 1 sw(๐‘ฆ โˆ— , ๐’—) ๐‘› โ‰ค = 2 ๐‘›(ln ๐‘› + 1) โˆŽ ๐‘œ ๐”ฝ sw ๐‘” ๐‰ , ๐’— 2๐‘›

  11. RANDOMIZED LOWER BOUND โ€ข Theorem [Caragiannis et al. 2012]: Any randomized voting rule ๐‘” has distortion ฮฉ ๐‘› โ€ข Proof: โ—ฆ Partition ๐‘‚ into subsets with ๐‘‚ ๐‘™ = ๐‘œ/ ๐‘› , and let the profile be ๐‘‚ ๐‘› ๐‘‚ 1 ๐‘‚ 2 โ€ฆ ๐‘ ๐‘› ๐‘ 1 ๐‘ 2 โ€ฆ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ 1 โ—ฆ W.l.o.g. ๐‘ 1 is selected with prob. โ‰ค ๐‘› โ—ฆ Let ๐‘ฃ ๐‘— ๐‘ 1 = 1 , ๐‘ฃ ๐‘— ๐‘ ๐‘˜ = 0 for ๐‘— โˆˆ ๐‘‚ 1 , ๐‘ฃ ๐‘— ๐‘ ๐‘˜ = 1/๐‘› otherwise โ—ฆ ๐‘œ/ ๐‘› โ‰ค sw ๐‘ 1 , ๐’— โ‰ค 2๐‘œ/ ๐‘› , whereas sw ๐‘ ๐‘˜ , ๐’— โ‰ค ๐‘œ/๐‘› for ๐‘˜ โ‰  1 โ—ฆ Distortion is at least ๐‘œ ๐‘› ๐‘› โ‰ฅ โˆŽ 1 ๐‘› โ‹… 2๐‘œ ๐‘› + 1 โˆ’ 1 ๐‘› โ‹… ๐‘œ 3 ๐‘›

  12. PARTICIPATORY BUDGETING Porto Alegre Paris Madrid New York Brazil France Spain USA Since 1989 โ‚ฌ100M (2016) โ‚ฌ24M (2016) $40M (2017)

  13. THE MODEL โ€ข The total budget is ๐ถ โ€ข Each alternative ๐‘ฆ has a cost ๐‘‘ ๐‘ฆ โ€ข For ๐‘Œ โŠ† ๐ต , the cost ๐‘‘(๐‘Œ) is additive โ€ข Utilities are also additive, that is, ๐‘ฃ ๐‘— ๐‘Œ = ฯƒ ๐‘ฆโˆˆ๐‘Œ ๐‘ฃ ๐‘— (๐‘ฆ) โ€ข The goal is to find ๐‘Œ โŠ† ๐ต that maximizes the social welfare sw ๐‘Œ, ๐’— = ฯƒ ๐‘—โˆˆ๐‘‚ ๐‘ฃ ๐‘— (๐‘Œ) subject to the budget constraint ๐‘‘ ๐‘Œ โ‰ค ๐ถ

  14. INPUT FORMATS Ranking Knapsack Budget by value voting โ‰ป โ‰ป โ‰ป 9 Ranking Threshold Threshold by VFM approval โ‰ป โ‰ป โ‰ป 5 Utility 3 Utility 6 Utility 2 Utility 8 Cost 6 Cost 2 Cost 1 Cost 9

  15. DISTORTION REDUX โ€ข Distortion allows us to objectively compare input formats, by associating an input format with the distortion of the best voting rule โ€ข Theorem [Benade et al. 2017]: Any randomized voting rule has distortion at least ฮฉ(๐‘›) under knapsack votes โ€ข Proof: โ—ฆ Let ๐ถ = 1 , ๐‘‘ ๐‘ ๐‘˜ = 1 for all ๐‘ ๐‘˜ โˆˆ ๐ต โ—ฆ Define ๐‰ : For each ๐‘ ๐‘˜ โˆˆ ๐ต we have ๐‘œ/๐‘› voters ๐‘‚ ๐‘˜ who choose ๐‘ฆ โ—ฆ W.l.o.g. ๐‘ 1 is selected with prob. โ‰ค 1/๐‘› , then let ๐‘ฃ ๐‘— ๐‘ 1 = 1 for all ๐‘— โˆˆ ๐‘‚ 1 , and ๐‘ฃ ๐‘— ๐‘ ๐‘˜ = ๐‘ฃ ๐‘— ๐‘ 1 = 1/2 for all ๐‘— โˆˆ ๐‘‚ ๐‘˜ , ๐‘˜ โ‰  1 โˆŽ

  16. RANDOMIZED BOUNDS เทฉ Ranking by value ฮ˜ ๐‘› $ เทฉ Ranking by VFM ฮ˜ ๐‘› ฮ˜(๐‘›) Knapsack voting Threshold approval ๐‘ƒ(log 2 ๐‘›) [Benade et al., 2017]

  17. METRIC PREFERENCES โ€ข Assume a metric space with metric ๐‘’ on space of voters and alternatives โ€ข Preferences are defined by ๐‘’ ๐‘—, ๐‘ฆ < ๐‘’ ๐‘—, ๐‘ง โ‡’ ๐‘ฆ โ‰ป ๐‘— ๐‘ง โ€ข Now we want to minimize the social cost, defined as sc ๐‘ฆ, ๐‘’ = ฯƒ ๐‘—โˆˆ๐‘‚ ๐‘’(๐‘—, ๐‘ฆ) ๐‘ ๐‘ ๐‘ โ‰ป ๐‘ โ‰ป ๐‘‘ ๐‘‘

  18. LOWER BOUND โ€ข Theorem [Anshelevich et al. 2015]: The distortion of any deterministic rule under metric preferences is at least 3 โ€ข Proof: โ€ข Theorem [Anshelevich et al. 2015]: The distortion of Copeland under metric preferences is at most 5

Recommend


More recommend