rare kaon decays at na62
play

Rare kaon decays at NA62 Evgueni Goudzovski (University of - PowerPoint PPT Presentation

Rare kaon decays at NA62 Evgueni Goudzovski (University of Birmingham) on behalf of the CERN-NA62 collaboration Outline: 1) The NA62 experiment at CERN 2) Measurement of the K + + decay 3) Searches for lepton number/flavour


  1. Rare kaon decays at NA62 Evgueni Goudzovski (University of Birmingham) on behalf of the CERN-NA62 collaboration Outline: 1) The NA62 experiment at CERN 2) Measurement of the K +  +  decay 3) Searches for lepton number/flavour violating K + decays 4) Searches for HNL production in K + decays 5) Summary CLFV 2019 conference Fukuoka, Japan  18 June 2019 0

  2. Kaon programme at CERN Earlier: NA31 1997:  ’/  : K L +K S 1998: K L +K S Jura mountains France 1999: K L +K S K S HI NA48 NA48/NA62: discovery 2000: K L only K S HI ECN3 hall Switzerland SPS of direct CPV 2001: K L +K S K S HI LHC NA48/1 2002: K S /hyperons 2003: K + /K − NA48/2 2004: K + /K − N Geneva airport 2007: K  e2 /K   2 tests NA62 R K run 2008: K  e2 /K   2 tests Main NA62 goal: K +  +  measurement to 10% precision 2015: commissioning NA62 with a novel decay-in-flight technique. 2016  18: physics run Currently ~200 participants from 31 institutions. 1 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  3. NA62 collaboration, Beamline & detector JINST 12 (2017) P05025 Hadronic Un-separated hadron (p/  + /K + ) beam. LAV: large-angle Calorimeter Muon SPS protons: 400 GeV , nominally 3.3 × 10 12 /spill. photon veto (12 stations) (HAC) detector K + : 75 GeV/c ( ± 1%), divergence < 100  rad.  t =70ps (MUV) Nominal beam rate: 750 MHz, K + rate 45 MHz; ~5 MHz K + decays in fiducial volume Dump GTK: beam tracker 300 m 3 O(10  6 ) mbar KTAG: Cherenkov kaon tagger,  t =70ps Small-angle Spectrometer: Anti-counters photon veto straw chambers LKr EM calorimeter Z [m]  Currently, 1 year of operation  2× 10 18 protons on target; 3×10 12 K + decays.  Single event sensitivities for K + decays: down to BR~10  12 .  Kinematic rejection factors: 1×10  3 for K +  +  0 , 3×10  4 for K  +  .  Hermetic photon veto:  0  decay suppression (for E  0 >40 GeV ) = 3×10  8 .  Particle ID (RICH+LKr+HAC+MUV): ~10  8 muon suppression. 2 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  4. NA62 data collection  Commissioning run 2015 : minimum bias data ( ~3×10 10 protons/pulse).  Physics run 2016 (30 days, ~1.3×10 12 ppp ): 10 11 useful K + decays.  Physics run 2017 (161 days, ~2.0×10 12 ppp ): ~2×10 12 useful K + decays.  Physics run 2018 (217 days, ~2.3×10 12 ppp ): expect 3×10 12 useful K + decays.  Resuming data taking after Long Shutdown 2 in 2021 . 3 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  5. K +  +  measurement: first result and prospects Result based on the 2016 data: Phys. Lett. B791 (2019) 156 4 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  6. Rare kaon decays: K  SM: box and penguin diagrams SM branching ratios Ultra-rare decays with Buras et al., JHEP 1511 (2015) 033 the highest CKM suppression: BR SM  10 11 Mode A ~ (m t /m W ) 2 |V ts V td | ~  5 * K +  +  (  ) 8.4  1.0 K L  0  3.4  0.6  SM precision surpasses any other FCNC process involving quarks. The uncertainties are largely parametric (CKM)  Measurement of |V td | complementary to those from e.g. B  B mixing. Theoretically clean,  Main focus of kaon physics: measurement almost unexplored, of both K +  +  and K L  0  decays. sensitive to new physics. 5 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  7. Status of theory and experiment BR(K L  0  ) vs BR(K +  +  ) CKM unitarity triangle with kaons Current experimental uncertainty (  1  ) NP with CKM-like flavour structure  Kaon measurements alone can fully constrain the unitarity triangle.  Complementary to B physics in the description of NP flavour dynamics. 6 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  8. K  signal region definition 2 =(P K  P  ) 2 vs track momentum Main K + decay modes m miss DATA 2016 ( >90% of BR) rejected K +  +  +   kinematically. K +  +  0  0 Resolution on m miss 2 :  =1.0  10  3 GeV 4 /c 2 . Measured kinematical Region II K +  +  0 background suppression:  K +  +  0 : 1×10 − 3 ;  K +  +  : 3×10 − 4 . Region I Further background K +  +  suppression:  PID (calorimeters & Cherenkov detectors):  suppression 10  8 .  Hermetic photon veto: suppression of  0  decays 3×10  8 . 7 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  9. Data 2016 K +  +  +   region PLB791 (2019) 156 Blinded Region 2  Data sample: 30 days at 1.3×10 12 ppp . K +  +   Number of kaon decays: region K +  +  0 Blinded N K = (1.21  0.02 syst )×10 11 . region 2016 data Region 1  Background estimates are mostly data-driven.  Signal acceptance: A  = (4.0  0.1)% .  Single-event sensitivity: SES = (3.15  0.24)×10  10 . 8 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  10. Result 2016 K +  +  +   region The RICH ring for the track y [mm] K +  +  region K +  +  0 region 2016 data   e One K +  +  candidate observed: BR(K +  +  ) < 11×10  10 at 90% CL. x [mm] PLB791 (2019) 156 +1.15 BNL-E949 ( K + decay at rest): BR(K +  +  ) = (1.73 )  10  10  1.05 SM prediction: BR(K +  +  ) = (0.84  0.10)×10  10  The NA62 decay-in-flight technique works.  A non-trivial result obtained with  2% of the total statistics collected. 9 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  11. K +  +  : next steps (CERN SPSC open session, 2 April 2019) Analysis of the 2017 data  Data sample: 161 days at 2.0×10 12 ppp .  Analysis procedure is similar to the 2016 one.  Number of kaon decays: N K = (1.3  0.1)×10 12 .  Single-event sensitivity: SES = (3.4  0.4)×10  11 .  Expected signal: 2.5  0.4 SM K +  +  events.  Expected background : 0.76  0.10 events, excluding upstream decays.  Result expected later this year, surpassing present best sensitivity. Analysis of the 2018 data  The largest sample collected so far: 217 days at 2.3×10 12 ppp .  Analysis procedure being optimized to improve acceptance. Further data collection necessary to reach the 10% precision  Data taking will resume after LS2 (in 2021 ).  Developing a strategy to collect 100 SM events by 2024 .  Possible beam dump operation ( 3 months of data taking = 10 18 pot ): competitive searches for hidden sector (long-lived HNL, DP , ALP). 10 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  12. K L  0  vs K +  +  : prospects KOTO 2015 data: BR<3.0×10  9 @90% CL PRL122 (2019) 021802 KOTO sensitivity with 2015  18 data. Expect result in 2019. KOTO sensitivity goal following beam & detector upgrades (~2025?) NA62 precision by 2025 (with 100 SM events) 11 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  13. Searches for lepton flavour and lepton number violation  Downscaled di-lepton trigger chains are in operation.  First results based on 80% of the 2017 data: CERN-EP-2019-104, arXiv:1905.07770, submitted to PLB.  Analyses completed so far: searches for K +   ℓ + ℓ + decays. 12 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  14. Backgrounds and PID Pion mis-ID probability vs momentum  Major background for 3-track decays: the K +  +  +   decay ( BR=5.6% ).  Studied with data-driven methods and dedicated simulations.  Background to decays into leptons: 1) via      decays in flight; 2) via   misidentification as e  .  Pion/electron identification: 1) by energy deposit in LKr ( E/p ); 2) by the RICH signal pattern. 13 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  15. K +   e + e + : auxiliary selection LNV selection: m(   e + e + ) SM selection: m(  + e + e  ) K +  +  +   K +  +  +   Signal region K +  +   e +  K +  +   e +  K +  +  0 D Auxiliary selection: LKr only is used for pion/electron ID  Validation of the background estimates using control mass regions.  Sensitivity is limited by K +  +  0 D background.  Therefore RICH is used for positron ID ( 10% loss of SES, 6 times lower background)… E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  16. K +   e + e + : main selection LNV selection: m(   e + e + ) SM selection: m(  + e + e  ) Signal region K +  +   e +  K +  [e + e   ]  0 e +  SES = (0.94  0.03)×10  10 Candidates observed: 2484 BR(K +  + e + e  ) = (3.00  0.09)×10  7 Expected background: 0.16  0.03 evt K + decays in FV: (2.14  0.07)×10 11 Candidates observed: 0 Result: BR(K +   e + e + )<2.2×10  10 at 90% CL 15 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  17. Search for K +    +  + decay LNV selection: m(    +  + ) SM selection: m(  +  +   ) Signal region K +  +  +   K +  +  +   Signal region K +  +    +  K +  +    +  Candidates observed: 8357 SES = (1.28  0.04)×10  11 Background: 0.07% Expected background: 0.91  0.41 evt BR(K +  +  +   ) = (0.962  0.025)×10  7 Candidates observed: 1 K + decays in FV: (7.94  0.23)×10 11 16 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

Recommend


More recommend