and na62 neutral pion form factor
play

and NA62 (Neutral Pion Form Factor) On behalf of the NA62 - PowerPoint PPT Presentation

Recent results from NA48/2 (LFV, DP) and NA62 (Neutral Pion Form Factor) On behalf of the NA62 collaboration Nicolas Lurkin School of Physics and Astronomy, University of Birmingham XIIIth International Conference on Heavy Quarks and Leptons,


  1. Recent results from NA48/2 (LFV, DP) and NA62 (Neutral Pion Form Factor) On behalf of the NA62 collaboration Nicolas Lurkin School of Physics and Astronomy, University of Birmingham XIIIth International Conference on Heavy Quarks and Leptons, 24-05-2016

  2. Outline  NA48/2 - πŽππŸ•πŸ‘ 𝐒 𝐋 experiment Lepton Number Violating (LNV) decay 𝑳 Β± β†’ 𝝆 βˆ“ 𝝂 Β± 𝝂 Β±  Search for resonances in 𝑳 Β± β†’ 𝝆 βˆ“ 𝝂 Β± 𝝂 Β± and 𝑳 Β± β†’ 𝝆 Β± 𝝂 + 𝝂 βˆ’  Dark Photon (DP) searches in 𝝆 𝟏 decay  𝝆 𝟏 electromagnetic transition form factor (TFF) measurement  Nicolas Lurkin, HQL2016,24-05-2016 2

  3. CERN NA48/NA62 experiments Experiments history Earlier NA31 Jura mountains 𝑆𝑓 𝜁 β€² /𝜁 France 1997 NA48 ( 𝐿 𝑇 / 𝐿 𝑀 ) Discovery of NA48/NA62: 2001 direct CPV SPS Centre of the LHC Switzerland Rare 𝐿 𝑇 and hyperon 2002 NA48/1 LHC ( 𝐿 𝑇 /hyperons) decays 2003 NA48/2 Direct CPV, Rare 𝐿 + / 𝐿 βˆ’ decays ( 𝐿 + / 𝐿 βˆ’ ) 2004 Β± /𝐿 Β± Geneva airport 2007 NA62 R K 𝑆 𝐿 = 𝐿 𝑓2 𝜈2 ( 𝐿 + / 𝐿 βˆ’ ) 2008 𝐿 + β†’ 𝜌 + πœ‰ πœ‰ , Rare 2014 NA62 𝐿 + and 𝜌 0 decays ( 𝐿 + ) Kaon decay in flight experiment NA62: currently ~ 200 participants, 29 institutions from 13 countries

  4. Experimental Setup (NA48/2 – πŽππŸ•πŸ‘ 𝐒 𝐋 )  Principal subdetectors οƒ˜ Scintillator hodoscope (HOD) οƒ˜ Low-level trigger, time measurement (150 ps) οƒ˜ Magnetic spectrometer (4DHCs) οƒ˜ 4 views/DCH high efficiency οƒ˜ 𝜏 π‘ž π‘ž = 1.02% βŠ• 0.044% β‹… π‘ž [GeV/ c ] NA48/2 = 0.48% βŠ• 0.009% β‹… π‘ž [GeV/ c ] NA62 R K οƒ˜ Liquid Krypton EM calorimeter (LKr) οƒ˜ High granularity, quasi-homogeneous NA48/2 𝑄 𝐿 = 60 Β± 3 GeV/ c οƒ˜ 𝐹 βŠ• 𝜏 𝐹 𝐹 = 3.2 9 𝐹 βŠ• 0.42 % [E in GeV] 3-track vertex trigger 𝐿 + 𝐿 βˆ’ beam Simultaneous οƒ˜ 𝜏 𝑦 = 𝜏 𝑧 = 4.2 𝐹 βŠ• 0.6 mm [E in GeV] πŽππŸ•πŸ‘ 𝐒 𝐋 (1.5 mm @ 10 GeV) 𝑄 𝐿 = 74 Β± 2 GeV/ c 𝐿 𝑓2 trigger 𝐿 + 𝐿 βˆ’ beam Alternate Nicolas Lurkin, HQL2016,24-05-2016 4

  5. LNV in the 𝑳 Β± β†’ 𝝆𝝂𝝂 decays  Majorana Neutrinos οƒ˜ Asaka-Shaposhnikov model ( πœ‰ MSM) [PLB 620 (2005) 17]: three sterile neutrinos N i in the SM to explain Dark Matter ( N 1 , 𝒫 (keV)) + Baryon Asymmetry and low πœ‰ mass ( N 2,3 𝒫 (100 MeV – few GeV)) οƒ˜ Effective vertices with 𝑋 Β± , π‘Ž and SM leptons with 𝑉 mixing matrix οƒ˜ Production of N 2,3 in 𝐿 Β± decays and N 2,3 decay for 𝑛 2,3 < 𝑛 𝐿 βˆ’ 𝑛 𝜈 𝐿 Β± β†’ 𝜈 Β± 𝑂, 𝑂 β†’ 𝜌 Β± 𝜈 βˆ“ For this result 4 οƒ˜ BR 𝐿 Β± β†’ 𝜈 Β± 𝑂 Γ— BR 𝑂 β†’ 𝜌 βˆ“ 𝜈 Β± ~ 𝑉 𝜈4  Inflatons οƒ˜ Shaposhnikov-Tkachev model [PLB 639 (2006) 414]: πœ‰ MSM + real scalar field (inflaton πœ“ ) with scale-invariant couplings to explain universe homogeneity and isotropy on large scales/structures on smaller scales πœ“ -Higgs mixing ( πœ„ ), πœ“ -Higgs coupling β†’ universe reheating, 𝜐 πœ“ ~ 10 βˆ’8 βˆ’ 10 βˆ’12 οƒ˜ οƒ˜ Production in Kaon decays: 2 π‘ž πœ“ 𝑛 πœ“ < 354 MeV/𝑑 2 and BR 𝐿 Β± β†’ 𝜌 Β± πœ“ = 1.3 Γ— 10 βˆ’3 πœ„ 2 𝑁 𝐿 Nicolas Lurkin, HQL2016,24-05-2016 5

  6. LNV: Same-Sign Muon Sample  Blind analysis: M 𝜌 βˆ“ 𝜈 Β± 𝜈 Β± οƒ˜ Selection based on simulation of 𝐿 Β± β†’ 𝜌 βˆ“ 𝜈 Β± 𝜈 Β± and 𝐿 Β± β†’ 𝜌 Β± 𝜌 + 𝜌 βˆ’ (background, similar topology) οƒ˜ 3-track vertex topology, 2 same-sign muons, 1 odd-sign pion, no missing momentum οƒ˜ First-order cancellation of systematic effects οƒ˜ Control region: 𝑁 𝜌𝜈𝜈 < 480 MeV/𝑑 2 οƒ˜ Signal region: 𝑁 𝜌𝜈𝜈 βˆ’ 𝑁 𝐿 < 5 MeV/𝑑 2  Results: οƒ˜ Event in Signal Region: 𝑂 𝑝𝑐𝑑 = 1 οƒ˜ Expected background from MC: 𝑂 exp = 1.163 Β± 0.867 𝑑𝑒𝑏𝑒 Β± 0.021 𝑓𝑦𝑒 Β± 0.116 𝑑𝑧𝑑𝑒 οƒ˜ From Rolke-Lopez statistical method: 𝐢𝑆 𝐿 Β± β†’ 𝜌 βˆ“ 𝜈 Β± 𝜈 Β± < 8.6 Γ— 10 βˆ’11 @ 90% CL Nicolas Lurkin, HQL2016,24-05-2016 6

  7. LNC: Opposite-Sign Muon Sample  Selection M 𝜌 Β± 𝜈 + 𝜈 βˆ’ οƒ˜ Similar to same-sign οƒ˜ 3-track vertex, 2 opposite-sign muons, 1 pion, no missing momentum οƒ˜ First-order cancellation of systematic effects οƒ˜ Signal region: 𝑁 𝜌𝜈𝜈 βˆ’ 𝑁 𝐿 < 8 MeV/𝑑 2  Results οƒ˜ Event in Signal Region: 3489 𝐿 Β± β†’ 𝜌 Β± 𝜈 + 𝜈 βˆ’ candidates M 𝜈 + 𝜈 βˆ’ οƒ˜ Background: 0.36 Β± 0.10 % M 𝜌 Β± 𝜈 βˆ“ οƒ˜ See [Phys. Lett. B697 (2011) 107] for previous measurement of BR and FF οƒ˜ Search for resonances in 𝑁 𝜌𝜈 and 𝑁 𝜈𝜈 invariant masses οƒ˜ step= 0.5𝜏 𝑁 𝑠𝑓𝑑 and window= Β±2𝜏 𝑁 𝑠𝑓𝑑 οƒ˜ Limit using Rolke-Lopez from 𝑂 𝑝𝑐𝑑 and 𝑂 π‘“π‘¦π‘ž for each hypothesis 7

  8. LNV and LNC: Resonances searches  Search for 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± decays, 284 mass hypotheses 2 possibilities for 𝑁 𝜌 βˆ“ 𝜈 Β± , closest to 𝑁 𝑠𝑓𝑑 chosen οƒ˜ Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’10 for 𝜐 < 100 ps οƒ˜  Upper limit on 𝐂𝐒 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝐂𝐒 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± UL(BR) vs. 𝑁 𝑠𝑓𝑑 N obs vs. 𝑁 𝑠𝑓𝑑 UL 𝑂 𝑑𝑗𝑕 οƒ˜ 𝑉𝑀 BR = 𝑂 𝐿 βˆ—π΅π‘‘π‘‘π‘“π‘žπ‘’π‘π‘œπ‘‘π‘“  Statistical significance 𝑂 𝑝𝑐𝑑 βˆ’π‘‚ π‘“π‘¦π‘ž οƒ˜ 𝑨 = 𝜏 𝑂 𝑝𝑐𝑑 βŠ•πœ 𝑂 π‘“π‘¦π‘ž 𝑨 vs. 𝑁 𝑠𝑓𝑑 Nicolas Lurkin, HQL2016,24-05-2016 8

  9. LNV and LNC: Resonances searches  Search for 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± decays, 284 mass hypotheses 2 possibilities for 𝑁 𝜌 βˆ“ 𝜈 Β± , closest to 𝑁 𝑠𝑓𝑑 chosen οƒ˜ Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’10 for 𝜐 < 100 ps οƒ˜  Search for 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝑢 πŸ“ β†’ 𝝆 Β± 𝝂 βˆ“ decays, 280 mass hypotheses Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’9 for 𝜐 < 100 ps οƒ˜  Upper limit on 𝐂𝐒 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝐂𝐒 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± N obs vs. 𝑁 𝑠𝑓𝑑 UL(BR) vs. 𝑁 𝑠𝑓𝑑 UL 𝑂 𝑑𝑗𝑕 οƒ˜ 𝑉𝑀 BR = 𝑂 𝐿 βˆ—π΅π‘‘π‘‘π‘“π‘žπ‘’π‘π‘œπ‘‘π‘“  Statistical significance 𝑂 𝑝𝑐𝑑 βˆ’π‘‚ π‘“π‘¦π‘ž οƒ˜ 𝑨 = 𝜏 𝑂 𝑝𝑐𝑑 βŠ•πœ 𝑂 π‘“π‘¦π‘ž 𝑨 vs. 𝑁 𝑠𝑓𝑑 Nicolas Lurkin, HQL2016,24-05-2016 9

  10. LNV and LNC: Resonance searches  Search for 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± decays, 284 mass hypotheses 2 possibilities for 𝑁 𝜌 βˆ“ 𝜈 Β± , closest to 𝑁 𝑠𝑓𝑑 chosen οƒ˜ Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’10 for 𝜐 < 100 ps οƒ˜  Search for 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝑢 πŸ“ β†’ 𝝆 Β± 𝝂 βˆ“ decays, 280 mass hypotheses Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’9 for 𝜐 < 100 ps οƒ˜  Search for 𝑳 Β± β†’ 𝝆 Β± 𝒀 𝒀 β†’ 𝝂 + 𝝂 βˆ’ decays, 267 mass hypotheses Never exceeds +3𝜏 : no signal observed and UL BR ~10 βˆ’9 for 𝜐 < 100 ps οƒ˜  Upper limit on 𝐂𝐒 𝑳 Β± β†’ 𝝂 Β± 𝑢 πŸ“ 𝐂𝐒 𝑢 πŸ“ β†’ 𝝆 βˆ“ 𝝂 Β± N obs vs. 𝑁 𝑠𝑓𝑑 UL(BR) vs. 𝑁 𝑠𝑓𝑑 UL 𝑂 𝑑𝑗𝑕 οƒ˜ 𝑉𝑀 BR = 𝑂 𝐿 βˆ—π΅π‘‘π‘‘π‘“π‘žπ‘’π‘π‘œπ‘‘π‘“  Statistical significance 𝑂 𝑝𝑐𝑑 βˆ’π‘‚ π‘“π‘¦π‘ž οƒ˜ 𝑨 = 𝜏 𝑂 𝑝𝑐𝑑 βŠ•πœ 𝑂 π‘“π‘¦π‘ž 𝑨 vs. 𝑁 𝑠𝑓𝑑 Nicolas Lurkin, HQL2016,24-05-2016 10

  11. Dark Photon Searches  Simplest hidden sector model: Extra U(1) symmetry with gauge boson 𝑩 β€² [B.Holdom, Phys. Lett. B166 (1986) 196] 𝑓 βˆ’  QED-like interactions with SM fermions 𝐡 β€² β„’ ~𝑕 β€² π‘Ÿ 𝑔 πœ” 𝑔 𝛿 𝜈 πœ” 𝑔 𝑉 𝜈 β€² οƒ˜ 𝑓 +  Coupling constants and charges generated through kinetic mixing between QED and the new U(1) gauge bosons β„’ 𝑛𝑗𝑦 = βˆ’ πœ— 𝐡 β€² 𝑅𝐹𝐸 𝐺 πœˆπœ‰ 𝛿 οƒ˜ 2 𝐺 πœˆπœ‰ 𝑒𝑏𝑠𝑙  Motivations: οƒ˜ Possible explanation for positron excess in cosmic rays (PAMELA, 𝑓 + 𝐡 β€² FERMI, AMS-02) by dark matter annihilation πœ“ 𝑓 βˆ’ ~ TeV 𝑓 + 𝐡 β€² 𝛿 πœ“ οƒ˜ Possible solution to the muon g-2 anomaly 𝑓 βˆ’ ~G eV 𝐡 β€² 𝜈 𝜈 Nicolas Lurkin, HQL2016,24-05-2016 11

  12. DP: 𝝆 𝟏 β†’ πœΉπ‘© β€² Decay  Production Batell, Pospelov and Ritz, [PRD80 (2009) 095024] 3 2 𝑛 𝐡′ οƒ˜ BR 𝜌 0 β†’ 𝛿𝐡 β€² = 2𝜁 2 1 βˆ’ BR 𝜌 0 β†’ 𝛿𝛿 2 BR 𝜌 0 β†’ 𝛿𝐡 β€² vs. 𝑛 𝐡 β€² 𝑛 𝜌0 οƒ˜ Mixing parameter 𝜁 and dark photon mass 𝑛 𝐡 β€² Valid for 𝜁 2 β‰ͺ 1 οƒ˜ Loss of sensitivity as 𝑛 𝐡 β€² approaches the 𝑛 𝜌 0 threshold οƒ˜ For 𝜁 2 > 10 βˆ’7 and 𝑛 𝐡 β€² > 10 MeV/𝑑 2 mean free path is negligible and prompt decay is assumed οƒ˜ Signature similar to 𝜌 𝐸 0 0 β†’ 𝛿𝑓 + 𝑓 βˆ’ ; 𝜌 0 β†’ 𝛿𝐡 β€² 𝜌 𝐸 ↳ 𝑓 + 𝑓 βˆ’  Decay Batell, Pospelov and Ritz, [PRD79 (2009) 115008] 𝑩 β€² decay BRs 𝑩 β€² decay width into SM fermions οƒ˜ Accessible in 𝜌 0 decay, 𝑓 + 𝑓 βˆ’ Assuming 𝜁 2 = 10 βˆ’4 assuming only into SM 𝜈 + 𝜈 βˆ’ fermions 𝒏 𝝆 𝟏 𝐡 β€² β‰ˆ Ξ“ 𝐡 β€² β†’ 𝑓 + 𝑓 βˆ’ πŸ‘π’ 𝝂 Ξ“ β‰ˆ π›½πœ 2 𝑛 𝐡 β€² /3 𝒏 𝝆 𝟏 𝑛 𝐡 β€² > 2𝑛 𝜌 0 : hadronic hadrons decay contribution Nicolas Lurkin, HQL2016,24-05-2016 12

Recommend


More recommend