recent results prospects
play

recent results & prospects Evgueni Goudzovski (University of - PowerPoint PPT Presentation

Kaon experiments at CERN: recent results & prospects Evgueni Goudzovski (University of Birmingham) Outline: 1) K decay experiments at CERN: NA48/2, NA62-R K , NA62 2) NA62 status and data quality 3) Recent results from Birmingham-led


  1. Kaon experiments at CERN: recent results & prospects Evgueni Goudzovski (University of Birmingham) Outline: 1) K  decay experiments at CERN: NA48/2, NA62-R K , NA62 2) NA62 status and data quality 3) Recent results from Birmingham-led analyses 4) Conclusions Particle physics seminar University of Birmingham  2 November 2016 0

  2. Energy & precision frontiers Discovery of a Higgs boson : success of the Standard Model (SM) No roadmap and “guaranteed discoveries” any longer: a data -driven era Limitations of the SM: “New physics” extensions: SM matter  5% of total mass-energy undiscovered particles Searches for New physics: two complementary approaches Precision (intensity) frontier Energy frontier (LHC) Low-energy observables: Direct production of new particles tests of precise SM predictions in high-energy collisions. for rare or forbidden processes. A collective effort A unique effort 1 E. Goudzovski / Birmingham, 2 November 2016

  3. The precision frontier: kaon physics The kaon:  One of the lightest unstable particles (discovered in 1947); the “ minimal flavour laboratory ”.  High production rates: high statistical precision. An example of rare K decay measurement: BR(K L  e + e  ) = (9  5)×10  12 . (BNL E871)  Essential in establishing the foundations of particle physics (quark mixing, CPV).  Current focus: searches for new physics Example: with rare and forbidden decays. Tree-level process: X g X g X For and , 2 E. Goudzovski / Birmingham, 2 November 2016

  4. Kaon physics facilities BNL CERN IHEP Protvino E865, E777, E787, E949 NA48, NA62 , LHCb ISTRA+, OKA, KLOD FNAL LNF KEK/J-PARC KTeV KLOE, KLOE-2 E391a, KOTO , TREK A variety of experimental techniques: K decay-in-flight (e.g. at CERN), stopped K + ,  factory 3 E. Goudzovski / Birmingham, 2 November 2016

  5. Kaon experiments at CERN 4 E. Goudzovski / Birmingham, 2 November 2016

  6. Kaon programme at CERN Earlier: NA31 1997:  ’/  : K L +K S 1998: K L +K S Jura mountains France 1999: K L +K S K S HI NA48 NA48/NA62: discovery 2000: K L only K S HI centre of the LHC Switzerland SPS of direct CPV 2001: K L +K S K S HI LHC NA48/1 2002: K S /hyperons 2003: K + /K − NA48/2 2004: K + /K − N Geneva airport 2007: K  e2 /K   2 tests NA62 R K phase 2008: K  e2 /K   2 tests 2014: pilot run NA62 Kaon decay in flight experiments. 2015  : data taking NA62: currently ~200 participants, ~30 institutions 5 E. Goudzovski / Birmingham, 2 November 2016

  7. K  decay experiments at CERN Experiment NA48/2 NA62 (R K phase) NA62 (K  ) (K  ) (K + ) 2003  2004 2007  2008 2015  2018 Data taking period Beam momentum, GeV/c 60 74 75 RMS momentum bite, GeV/c 2.2 1.4 0.8 Spectrometer thickness, X 0 2.8% 2.8% 1.8% Spectrometer P T kick, MeV/c 120 265 270 M(K     +   ) resolution, MeV/c 2 1.7 1.2 0.8 K decays in fiducial volume 2×10 11 2×10 10 1.2×10 13 Main trigger multi-track; Min.bias + K  + … K     0  0 e  The NA48 detector The NA62 experiment New detector  Main goal: collect 100 SM K +  +  decays, BR SM =(9.11  0.72)×10  11 . Buras et al., JHEP 1511 (2015) 033 +1.15  Current K +  +  experimental status: BR = (1.73 )  10  10 from  1.05 7 candidates with expected background of 2.6 observed by BNL-E949. 6 PRL101 (2008) 191802 E. Goudzovski / Birmingham, 2 November 2016

  8. NA48/2 and NA62-R K experiments 2003 – 2007: charged kaon beams, the NA48 detector Narrow momentum band K  beams: P K = 60 (74) GeV/c ,  P K /P K ~ 1% (rms).  Maximum K  decay rate ~100 kHz ;  NA48/2: six months in 2003  04;  NA62-R K : four months in 2007. Principal subdetectors:  Magnetic spectrometer (4 DCHs) 4 views/DCH: redundancy  efficiency;  p/p = 0.48% ⨁ 0.009%p [GeV/c] (in 2007)  Scintillator hodoscope (HOD) Fast trigger, time measurement ( 150ps ).  Liquid Krypton EM calorimeter (LKr) Vacuum High granularity, quasi-homogeneous; beam pipe  E /E = 3.2%/E 1/2 ⨁ 9%/E ⨁ 0.42% [GeV];  x =  y =4.2mm/E 1/2 ⨁ 0.6mm ( 1.5mm@10GeV ). 7 E. Goudzovski / Birmingham, 2 November 2016 Beam

  9. The NA62 experiment Un-separated hadron (p/  + /K + ) beam. Total length: ~270m 400GeV SPS protons (10 12 /spill); K + : 75GeV/c ( ± 1%), divergence < 100  rad. SAV: 800MHz beam rate  45MHz K + rate  Small Angle Photon Veto 5MHz K + decays in fiducial volume Vacuum tank GTK: beam NA62UK Hodoscope spectrometer KTAG Vacuum: p<10 – 5 mbar (Cherenkov kaon tagger) Anti- <80ps timing counters Beam <80ps timing pipe Decay region: L=65m  Expected single event sensitivities: ~10  12 for K  decays, ~10  11 for  0 decays.  Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10 3 for K +  +  0 , 1.5×10 4 for K  +  .  Hermetic photon veto: ~10 8 suppression of  0  .  Particle ID (RICH+LKr+MUV): ~10 7 muon suppression. 8 E. Goudzovski / Birmingham, 2 November 2016

  10. Rare kaon decays: K  SM: box and penguin diagrams SM branching ratios Ultra-rare decays with Buras et al., JHEP 1511 (2015) 033 the highest CKM suppression: BR SM  10 11 Mode A ~ (m t /m W ) 2 |V ts V td | ~  5 * K +  +  (  ) 9.11  0.72 K L  0  3.00  0.31  Hadronic matrix element is related The uncertainties are largely to a measured quantity ( K +  0 e +  ). parametric (CKM)  SM precision surpasses any other FCNC process involving quarks. Theoretically clean,  Measurement of |V td | complementary almost unexplored, to those from B  B mixing or B 0  . sensitive to new physics. 9 E. Goudzovski / Birmingham, 2 November 2016

  11. K  : experiment vs theory CKM unitarity triangle with kaons BR(K L  0  ) vs BR(K +  +  ) Current experimental uncertainty (littlest Higgs D. Straub with T parity ) CKM 2010 NA62 aim: collect O(100) SM K +  +  decays with <20% background in 3 years of data taking using a novel decay-in-flight technique. Signature: high momentum K + ( 75GeV/c )  low momentum  + ( 15  35 GeV/c ). max detected K + decays/proton ( p K /p 0  0.2 ); Advantages: efficient photon veto ( >40 GeV missing energy) Un-separated beam ( 6% kaons)  high rates, additional background sources. 10 E. Goudzovski / Birmingham, 2 November 2016

  12. NA62 physics programme  NA62 Run 2 (2015  2018) : focused on the “golden mode” K +  +  .  Trigger bandwidth for other physics is limited.  Several measurements at nominal SES~10  12 : K +  + A’ ,  0  .  A few measurements do not require extreme SES: K +  ℓ +  H , …  In general, limited sensitivities to rare/forbidden decays ( SES~10  10 to ~10  11 , similar to NA48/2 and BNL-E865).  A proof of principle for a broad rare/forbidden decay programme.  NA62 Run 3 (2021  2024) : programme is under discussion. [Presented at “Physics Beyond C olliders” workshop, CERN, Sep 2016] Existing apparatus, different trigger logic: no capital investment .  Rare/forbidden K + and  0 decays at SES~10  12 :  K + physics: K +  + ℓ + ℓ  , K +  +  ℓ + ℓ  , K +  ℓ +  , K +  +  , …  0 physics:  0  e + e  ,  0  e + e  e + e  ,  0  3  ,  0  4  , … Searches for LFV/LNV: K +   ℓ + ℓ + , K +  +  e ,  0  e , … Possibly K L rare decays ( SES~10  11 ), including K L  0 ℓ + ℓ  [CPV].   Dump mode: hidden sector searches (long-lived HNL, DP , ALP). 11 E. Goudzovski / Birmingham, 2 November 2016

  13. The lepton programme Neutrino oscillations discovery (1998) e   + First non-SM phenomenon: 1) Lepton Flavour Violation;  e 2) non-zero neutrino mass. Neutrino source Neutrino detector New physics scenarios involving LFV : #  Neutrino is a Majorana fermion (identical to antineutrino)  Heavy (possibly sterile) neutrino states Astrophysical consequences:  Dark matter, nucleosynthesis, Supernova evolution, ...  Birmingham-led programme (supported by ERC starting grant): search for forbidden states with lepton pair ( ee ,  ,  e ) 12 E. Goudzovski / Birmingham, 2 November 2016

  14. NA62 status & data quality 13 E. Goudzovski / Birmingham, 2 November 2016

  15. Data collection K +  +  +   signal (2016) Rare decay: BR~10  7  Minimum bias ( ~1% intensity) and K  test data collected in 2015  Most systems commissioned and meet the design requirements  Beam time in 2016 : 3 May  14 November .  running at ~35% of the nominal intensity now (limited by SPS capability)  Long (~6 months) runs scheduled in 2017 and 2018 . Expect to reach a few SM K  events sensitivity with 2016 data 14 E. Goudzovski / Birmingham, 2 November 2016

Recommend


More recommend