quantum transport in inas gasb
play

Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories - PowerPoint PPT Presentation

Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories Albuquerque, New Mexico, USA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin


  1. Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories Albuquerque, New Mexico, USA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE -AC04-94AL85000.

  2. Outline • InAs/GaSb heterostructure • The experiments and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  3. InAs/GaSb heterostructure: D E g0 Quantum spin Hall effect C.X. Liu, T.L. Hughes, X.L. Qi, K. Wang, and S.C. Zhang, Phys. Rev. Lett. 100 , 236601 (2008).

  4. Outline • InAs/GaSb heterostructure • The experiment and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  5. Field-effect transistor: Growth structure: Yang et al, Appl. Phys. Lett. 69 , 85 (1996). air --------------------- InAs 20A (or GaSb 20A) ---------------- AlSb 500A ------------------------ GaSb QW 50A AlSb ------------------------- InAs QW 150A GaSb buffer on p-type GaSb --------------------- AlSb 1um --------------- GaSb 1um --------------- D GaSb substrate (p-doped) E g0

  6. R xy R xx V g I

  7. Electron transport at zero magnetic field: B = 0 T D 6 T ~ 25 mK E g0 4 R xx (k  ) 2 0 -10 -5 0 5 10 V g (V)

  8. 15 T ~ 25 mK B = 0 T 2 /h) 10 G xx (e 2 /h 5 4e -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 V g (V)

  9. s th xx  e 2 /h  E g0 / D Y. Naveh and B. Laikhtman, Europhys. Lett. 55 , 545 (2001). D E g0 ~ 15 meV E g0 D ~ 1 meV s th xx  15 e 2 /h G th xx = 5 e 2 /h ~ 4 e 2 /h

  10. 4.3 G xx = 3.97 + 0.10  log (T) 2 /h) 4.2 G xx (e 4.1 10 100 1000 T (mK) L.J. Cooper et al, Phys. Rev. B 57 11915 (1998)

  11. Electron transport at low magnetic fields: B = 2 T 0.04  =16 R xx (arb. units) 0.02 22 28 34 0.00 2 3 4 5 6 7 8 9 10 V g (T)

  12. 15 n=3.93+1.35xV g 10 CNP -2 ) 11 cm 5 n, p (10 0 -5 p=2.65+1.31xV g -10 -10 -5 0 5 10 V g (V) At charge neutrality point CNP (n + p =0) |n| = |p| ~ 0.6  10 11 cm -2

  13. s xy B = 5T 12 4 56 s xx 2 /h) 8  e =12 s xx , s xy (e 2 4 1 0 -4  h =-2 -4 -6 -3 0 3 6 V g (V)

  14. Electron transport at high magnetic fields: 4  e =3 2 2 /h) 2  h s xx & s xy (e 1 -1 -2 0 B = 20 T T ~ 30 mK -2 -10 -5 0 5 10 V g (V)

  15. 8 7 6 5 2 /h) s xx (e 4 3 2 1 0 -4 -3 -2 -1 0 1 2 3 4 2 /h) s xy (e ( s xx – N) 2 + s xy 2 = N 2

  16. Semi-Circular conductivity law in quantum Hall plateau transition ( s xy –  /2) 2 + s xx 2 = (  /2) 2 independently of r xx M. Hilke et al, Nature (1998)

  17. r xx = h/e 2 /(2N) ( s xx – N) 2 + s xy 2 = N 2 1.0 2  e =1 3 0.5 2 ) r xx & r xy (h/e 0.0  h =-1 B = 20 T -0.5 T ~ 30 mK -2 -1.0 -10 -5 0 5 10 V g (V)

  18. The circular conductivity law due to co-existence of both electrons and holes and their interactions • In the CN regime, electron density and hole density low. • Landau level filling factors for electrons and holes small • Without e-h interactions, 2D electrons and holes in high s xx =0 magnetic field induced insulating phase, and s xy = 0.

  19. R.J. Nicolas et al, Phys. Rev. Lett. 85 , 2364 (2000) • Breakup of perfect dissipationless edge states due to disorder and e-h interactions. • Breakup of stable orbits can give rise to chaotic motions. [G. Müller, G.S. Boebinger et al, Phys. Rev. Lett. 75 , 2875 (1995).]

  20. Outline • InAs/GaSb heterostructure • The experiment and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  21. 8-band k.p calculations with QW widths (GaSb 5 nm; InAs 10 nm) K. Chang, unpublished Z. Liu et al., Acta Phys. Sin. 2012, 61, 217303

  22. Density n = 1.8x10 11 cm -2 Mobility m = 1.2x10 5 cm 2 /Vs E F = 18.7 meV l mfp = 0.8 m m V F = 5.4x10 5 m/s

  23. S-N-S junction Ta-InAs/GaSb-Ta junction Junction: W=10 m m L= 2 m m • InAs 2 nm Ta Ta AlSb 50 nm 240 nm 240 nm GaSb 5 nm InAs 10 nm AlSb 50 nm 200 bilayer Ta 150 R (  ) T c =1.55K I V 100 Ta 50 0 10 20 30 40 T (K)

  24. Ta V DC +dV I DC +dI Ta 250 T=0.5 K B=0 200 2 /h) 150 dI/dV (e 100 50 -40 -20 0 20 40 DCV on sample (mV) V DC (meV) Zero bias conductance peak + multiple equally spaced dips

  25. McMillan-Rowell Oscillations (MRO) V n = V 0 + n×hV F /4d N S N J. M. Rowell and W. L. McMillan, Phys. Rev. Lett. 16 , 453 (1966). C. Visanli et al, Nature Physics 8, 539 (2012). B. Wu et al, arXiv:1305.5140.

  26. McMillan-Rowell like Oscillations 250 250 T=0.5 K T=0.5 K B=0 B=0 200 200 30 2 /h) 2 /h) Vn (mV) 150 150 dI/dV (e dI/dV (e n=12 n=12 20 3 3 100 100 0.5 K 10 0.3 K 50 50 4 4 1 2 3 4 5 -40 -40 -20 -20 0 0 20 20 40 40 n DCV on sample (mV) DCV on sample (mV) V n = V 0 + n×hV F /4d N

  27. One serious issue with MRO explanation: From the slope of MRO plot, a Fermi velocity of V F = 1.3x10 7 m/s is obtained. This value is much larger than that (V F = 5.4x10 5 m/s) obtained fro SdH oscillations.

  28. Giant super-current in Ta- InAs/GaSb-Ta junction bilayer Ta I V Ta

  29. Giant super-current observed

  30. Large T c

  31. I ( m A)

  32. A couple of details: 1) Very large Jc, Jc = 350 nA/ m m >> ~15 nA/ m m reported by other groups. (considering L = 2 m m, x sc ~ 80nm (bulk Ta) and l mfl = 0.8 m m) 2) Large number of flux per lobe ~ 300 F 0 >>1. A large value of flux per lobe was also observed in S-GaAs- S junction by Rokhinson et al.

  33. Summary: (1) Well-developed integer quantum Hall effect states at Landau level fillings  =1, 2 in the hole regime and  =1, 2, 3… in the electron regime. (2) Chaotic quantum transport behavior at extremely high magnetic fields around the charge neutrality point. (3) Circular conductivity law in s xx versus s xy . (4) MRO in Ta-InAs/GaSb-Ta junction device (5) Giant supercurrent in Ta-InAs/GaSb-Ta junction

  34. Collaborators: Sandia: – John Klem – Sam Hawkins – Ken Lyo – Jin Kim – Mike Cich – Madhu Thalakulam – Wenlong Yu – Xiaoyan Shi Princeton: – Jian Li – Andrei Berniverg Georgia Tech: – Wenlong Yu – Zhigang Jiang

Recommend


More recommend