title page title here title here divisibility of qubit
play

TITLE PAGE TITLE HERE TITLE HERE DIVISIBILITY OF QUBIT CHANNELS - PowerPoint PPT Presentation

TITLE PAGE TITLE HERE TITLE HERE DIVISIBILITY OF QUBIT CHANNELS AND DYNAMICAL MAPS David Carlos Mario Ziman Davalos Pineda PLAN 1. Channel divisibility 2. dynamical maps 3. Subsets of 1. 4. How 2. passes through 3. QUANTUM CHANNELS


  1. TITLE PAGE TITLE HERE TITLE HERE DIVISIBILITY OF QUBIT CHANNELS AND DYNAMICAL MAPS David Carlos Mario Ziman Davalos Pineda

  2. PLAN 1. Channel divisibility 2. dynamical maps 3. Subsets of 1. 4. How 2. passes through 3.

  3. QUANTUM CHANNELS time L E N N A H C Φ completely positive trace-preserving linear map

  4. DIVISIBILITY time L E N N A H C L E N N A H C

  5. TYPES OF DIVISIBILITY TYPES OF DIVISIBILITY in fjnite ly simal DIVISIBLE M.Wolf, J. Eisert, T. Cubitt, I. Cirac, Phys. Rev. Lett., 101, 150402 (2008) M.Wolf, I. Cirac, Comm. Math. Phys. 279, 147–168 (2008) I n d I v I s I b l e infnitesimal divisible infnitely divisible

  6. SET OF CHANNELS - convex set Φ identity

  7. SET OF CHANNELS infnitely-divisible Φ infnitesimal-divisible divisible indivisible identity C ∞ ⊂ C inf ⊂ C div C indivisible , e.g. qNOT

  8. DYNAMICAL MAP t Φ → Φ t identity SET OF CHANNELS

  9. DYNAMICAL MAP t Φ → Φ Δ=Φ·Ψ -1 t Δ Ψ identity SET OF CHANNELS

  10. DYNAMICAL MAP t Φ → Φ Δ=Φ·Ψ -1 t t → Ψ t Δ Δ Ψ identity SET OF CHANNELS

  11. DYNAMICAL MAP t Φ → semigroup t t → Ψ t → ε t t identity SET OF CHANNELS

  12. DYNAMICAL MAP t Φ → semigroup t t → Ψ t P → ε t CP t identity DIVISIBILITY OF DYNAMICAL MAPS SET OF CHANNELS

  13. DYNAMICAL MAP NP L-divisible CP-divisible P-divisible IN-divisible CP identity P for all time intervals

  14. CHANNEL TYPES C L L-divisible C CP CP-divisible C P P-divisible C NP NP-divisible identity Achievability by dynamical maps + closure

  15. C NP =C CHANNEL TYPES C P C L L-divisible C div C CP CP-divisible C P P-divisible C NP NP-divisible C ∞ C CP = C L C inf C indivisible C div divisible C inf infnitesimal-divisible C ∞ infnitely-divisible

  16. C NP =C CHANNEL TYPES C P C L L-divisible C div C CP CP-divisible C P P-divisible C ∞ ⊂ C inf ⊂ C div C NP NP-divisible C ∞ C CP ⊂ = = C L ⊂ C CP ⊂ C P C L C inf C indivisible C div divisible C inf infnitesimal-divisible C ∞ infnitely-divisible

  17. QUBIT UNITAL C P ⇔ det ≥ 0 i n d C indivisible = faces i v i s C P i b l e not C P identity C P but not divisible

  18. QUBIT UNITAL C L C CP \ C L no tetrahedron symmetries plus tetrahedron symmetries

  19. QUBIT UNITAL identity

  20. QUBIT NONUNITAL

  21. DYNAMICAL MAP L-divisible CP-divisible P-divisible NP-divisible identity dynamical phases - intervals

  22. CHANNELS L-divisible CP-divisible divisible indivisible identity dynamical phases - pointwise

  23. QUESTION Which transitions are allowed? identity

  24. QUBIT UNITAL identity All types of borders exist.

  25. QUBIT DYNAMICAL MAP identity C P C L C div qNOT Time evolution to quantum NOT T. Rybár, S. N. Filippov, M. Ziman, V. Bužek. J. Phys. B, 45, 154006 (2012 )

  26. QUBIT DYNAMICAL MAP Jaynes-Cumming model E. T. Jaynes and F. W. Cummings. Proc. IEEE 51, 89 (1963)

  27. GAME OVER THANK YOU THANK YOU FOR YOUR FOR YOUR ATTENTION ATTENTION D. Davalos, M. Ziman, C. Pineda, Quantum 3, 144 (2019)

Recommend


More recommend