TITLE PAGE TITLE HERE TITLE HERE DIVISIBILITY OF QUBIT CHANNELS AND DYNAMICAL MAPS David Carlos Mario Ziman Davalos Pineda
PLAN 1. Channel divisibility 2. dynamical maps 3. Subsets of 1. 4. How 2. passes through 3.
QUANTUM CHANNELS time L E N N A H C Φ completely positive trace-preserving linear map
DIVISIBILITY time L E N N A H C L E N N A H C
TYPES OF DIVISIBILITY TYPES OF DIVISIBILITY in fjnite ly simal DIVISIBLE M.Wolf, J. Eisert, T. Cubitt, I. Cirac, Phys. Rev. Lett., 101, 150402 (2008) M.Wolf, I. Cirac, Comm. Math. Phys. 279, 147–168 (2008) I n d I v I s I b l e infnitesimal divisible infnitely divisible
SET OF CHANNELS - convex set Φ identity
SET OF CHANNELS infnitely-divisible Φ infnitesimal-divisible divisible indivisible identity C ∞ ⊂ C inf ⊂ C div C indivisible , e.g. qNOT
DYNAMICAL MAP t Φ → Φ t identity SET OF CHANNELS
DYNAMICAL MAP t Φ → Φ Δ=Φ·Ψ -1 t Δ Ψ identity SET OF CHANNELS
DYNAMICAL MAP t Φ → Φ Δ=Φ·Ψ -1 t t → Ψ t Δ Δ Ψ identity SET OF CHANNELS
DYNAMICAL MAP t Φ → semigroup t t → Ψ t → ε t t identity SET OF CHANNELS
DYNAMICAL MAP t Φ → semigroup t t → Ψ t P → ε t CP t identity DIVISIBILITY OF DYNAMICAL MAPS SET OF CHANNELS
DYNAMICAL MAP NP L-divisible CP-divisible P-divisible IN-divisible CP identity P for all time intervals
CHANNEL TYPES C L L-divisible C CP CP-divisible C P P-divisible C NP NP-divisible identity Achievability by dynamical maps + closure
C NP =C CHANNEL TYPES C P C L L-divisible C div C CP CP-divisible C P P-divisible C NP NP-divisible C ∞ C CP = C L C inf C indivisible C div divisible C inf infnitesimal-divisible C ∞ infnitely-divisible
C NP =C CHANNEL TYPES C P C L L-divisible C div C CP CP-divisible C P P-divisible C ∞ ⊂ C inf ⊂ C div C NP NP-divisible C ∞ C CP ⊂ = = C L ⊂ C CP ⊂ C P C L C inf C indivisible C div divisible C inf infnitesimal-divisible C ∞ infnitely-divisible
QUBIT UNITAL C P ⇔ det ≥ 0 i n d C indivisible = faces i v i s C P i b l e not C P identity C P but not divisible
QUBIT UNITAL C L C CP \ C L no tetrahedron symmetries plus tetrahedron symmetries
QUBIT UNITAL identity
QUBIT NONUNITAL
DYNAMICAL MAP L-divisible CP-divisible P-divisible NP-divisible identity dynamical phases - intervals
CHANNELS L-divisible CP-divisible divisible indivisible identity dynamical phases - pointwise
QUESTION Which transitions are allowed? identity
QUBIT UNITAL identity All types of borders exist.
QUBIT DYNAMICAL MAP identity C P C L C div qNOT Time evolution to quantum NOT T. Rybár, S. N. Filippov, M. Ziman, V. Bužek. J. Phys. B, 45, 154006 (2012 )
QUBIT DYNAMICAL MAP Jaynes-Cumming model E. T. Jaynes and F. W. Cummings. Proc. IEEE 51, 89 (1963)
GAME OVER THANK YOU THANK YOU FOR YOUR FOR YOUR ATTENTION ATTENTION D. Davalos, M. Ziman, C. Pineda, Quantum 3, 144 (2019)
Recommend
More recommend