quantum criticality high tc superconductivity and the ads
play

Quantum Criticality, high Tc superconductivity and the AdS/CFT - PowerPoint PPT Presentation

Quantum Criticality, high Tc superconductivity and the AdS/CFT correspondence. Jan Zaanen QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. 1 String theory: what is it really good for? - Hadron (nuclear)


  1. Quantum Criticality, high Tc superconductivity and the AdS/CFT correspondence. Jan Zaanen QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 1

  2. String theory: what is it really good for? - Hadron (nuclear) physics: quark-gluon plasma in RIHC. - Quantum matter: quantum criticality in heavy fermion systems, high Tc superconductors, … Started in 2001, got on steam in 2007. QuickTime™ and a decompressor are needed to see this picture. Son Hartnoll Herzog Kovtun McGreevy Liu Schalm 2

  3. Quantum critical matter Quark gluon plasma Iron High Tc Heavy fermions superconductors (?) superconductors Quantum critical Quantum critical 3

  4. High-Tc Has Changed Landscape of Condensed Matter Physics Magneto-optics High-resolution ARPES Transport-Nernst effect Spin-polarized Neutron STM High Tc Superconductivity Inelastic X-Ray Scattering Angle-resolved MR/Heat Capacity

  5. ? QuickTime™ and a decompressor are needed to see this picture. Photoemission spectrum

  6. Holography and quantum matter “ Planckian dissipation ” : quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, … , Sachdev) . Reissner Nordstrom black hole: “ critical Fermi-liquids ” , like high Tc ’ s normal state (Hong Liu, John McGreevy) . Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid (critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll) . Scalar hair: holographic superconductivity, a new mechanism for superconductivity at a high temperature (Gubser, Hartnoll … ) . 6

  7. Plan 1. Crash course: quantum critical electron matter in solids. 2. Crash course: the AdS/CFT correspondence. 3. Holographic quantum matter: Planckian dissipation, marginal/critical Fermi-liquids, Fermi liquids and superconductors. 7

  8. Twenty five years ago … Mueller Bednorz Ceramic CuO ’ s, likeYBa2Cu3O7 Superconductivity jumps to ‘ high ’ temperatures 8

  9. Graveyard of Theories Mueller Schrieffer Mott Laughlin Abrikosov Anderson Leggett De Gennes Bednorz QuickTime™ and a decompressor are needed to see this picture. Lee Wilczek Ginzburg Yang 9

  10. The quantum in the kitchen: Landau ’ s miracle Kinetic energy Electrons are waves Fermi Pauli exclusion principle: every energy state occupied by one electron Unreasonable: electrons strongly interact !! Fermi momenta k=1/wavelength Landau ’ s Fermi-liquid: the highly collective low energy quantum excitations are like electrons that do not interact. Fermi surface of copper 10

  11. BCS theory: fermions turning into bosons Fermi-liquid fundamentally unstable to attractive interactions. Bardeen Cooper Schrieffer Quasiparticles pair and Bose condense:   vac .  c  k    BCS   k u k  v k c k  Ground state Conventional superconductors (Tc < 40K): “ pairing glue ” = exchange of quantized lattice vibrations (phonons) ฀ 11

  12. Fermion sign problem Imaginary time path-integral formulation Boltzmannons or Bosons: Fermions:  integrand non-negative  negative Boltzmann weights  probability of equivalent classical  non probablistic: NP-hard system: (crosslinked) ringpolymers problem (Troyer, Wiese)!!!

  13. Phase diagram high Tc superconductors The clash: the quantum … which is good for critical metal superconductivity! The quantized The quantum fog traffic jam (Fermi gas) returns QuickTime™ and a decompressor are needed to see this picture. 13

  14. Divine resistivity 14

  15. Fractal Cauliflower (romanesco)

  16. Quantum critical cauliflower

  17. Quantum critical cauliflower

  18. Quantum critical cauliflower

  19. Quantum critical cauliflower

  20. Quantum criticality or ‘ conformal fields ’ 20

  21. Quantum critical hydrodynamics: Planckian relaxation time  Relaxation time : time it takes to convert work in entropy.        p Viscosity: s    p k B T ฀ Entropy density: T   s  T   k B ?? 1 ฀ “ Planckian viscosity ” ฀  ฀ Planckian relaxation time = the shortest possible     k B T ฀ relaxation time under equilibrium conditions that can ฀ only be reached when the quantum dynamics is scale invariant !! 21 ฀

  22. Critical Cuprates are Planckian Dissipators van der Marel, JZ, … Nature 2003: Optical conductivity QC cuprates Frequency less than temperature: 2  r  pr  1 (  , T )  1  r  A k B T 2 , 4  1   2  r ]  const .(1  A 2 [   k B T ] 2 ) [ k B T  1 ฀ A= 0.7 : the normal state of optimallly doped cuprates is a Planckian dissipator ! ฀ 22

  23. Divine resistivity ?! 23

  24. Quantum Phase transitions Quantum scale invariance emerges naturally at a zero temperature continuous phase transition driven by quantum fluctuations: JZ, Science 319, 1205 (2008) 24

  25. Phase diagram high Tc superconductors The clash: the quantum … which is good for critical metal superconductivity! The quantized The quantum fog traffic jam (Fermi gas) returns QuickTime™ and a decompressor are needed to see this picture. 25

  26. Fermionic quantum phase transitions in the heavy fermion metals JZ, Science 319, 1205 (2008) QP effective mass ‘ bad m *  1 actors ’ E F E F  0  m *   Coleman Paschen et al., Nature (2004) Rutgers ฀

  27. Critical Fermi surfaces in heavy fermion systems Blue = Fermi liquid Yellow= quantum critical regime Antiferromagnetic order FL Fermi surface FL Fermi surface Coexisting critical Fermi surfaces ?

  28. Hertz-Millis and Chubukov ’ s “ critical glue ” Bosonic (magnetic, etc.) order parameter drives the quantum phase transition Electrons: fermion gas = heat bath damping bosonic critical fluctuations Bosonic critical fluctuations ‘ back react ’ as pairing glue on the electrons Supercon ductivity Fermi liquid E.g.: Moon, Chubukov, J. Low Temp. Phys. 161, 263 (2010) 28

  29. “ Strong coupling ” Migdal- Eliashberg theory Attractive interaction due to “ glue boson ” , two parameters:   V / E F Coupling strength:  boson Migdal parameter: E F ฀ Migdal-Eliashberg: dress boson and fermion propagators up to all orders  B / E F ignoring vertex corrections which are O( ). ฀ ฀ 29

  30. Computing the pair susceptibility: full Eliashberg 30

  31. Watching electrons: QuickTime™ and a decompressor are needed to see this picture. photoemission Kinetic energy Electron spectral function: probability to create or annihilate an electron at a given momentum and energy. Fermi energy Fermi momenta Fermi k=1/wavelength energy energy Fermi surface of copper 31 k=1/wavelength

  32. Fermi-liquid phenomenology Bare single fermion propagator ‘ enumerates the fixed point ’ :   Z 1    G , k                      2 k m i E v k k 2 0 F R F     , k      Im G (  , k )  A  , k Spectral function: 2 2 m  2       2     k  k F   , k     , k   The Fermi liquid ‘ lawyer list ’ : - At T= 0 the spectral weight is zero at the Fermi-energy except for the ฀    Z  k  k F   quasiparticle peak at the Fermi surface: A E F , k 2       E F       , k - Analytical structure of the self-energy:                        , k E , k E k k    ฀ F F F F k      T 2  E k k F F   E F , k F , T   - Temperature dependence: ฀ 32 ฀

  33. ARPES: Observing Fermi liquids ‘ MDC ’ at E F in conventional Fermi-liquids: sharp Quasiparticle ‘ poles ’ 2D metal (NbSe 2 ) 33

  34. Cuprates: “ Marginal ” or “ Critical ” Fermi liquids Fermi ‘ arcs ’ (underdoped) EDC lineshape: ‘ branch cut ’ (conformal), closing to Fermi-surfaces width propotional to energy (optimally-, overdoped). 34

  35. Varma ’ s Marginal Fermi liquid phenomenology. Fermi- gas interacting by second order perturbation theory with ‘ singular heat bath ’ : Im P ( q ,  )  N (0)  for |  |  T T ,   , for |  |  T  N (0) sign  QuickTime™ and a decompressor are needed to see this picture. Directly observed in e.g. Raman ?? 1 ฀ G ( k ,  )  Single electron response (photoemission):     ( k ,  )   v F k  k F   2     i  g    /  c    ( k ,  )   ln max |  |, T 2 max |  |, T        c   ฀ 1     max |  |, T Single particle life time is coincident (?!) with the transport life time => linear resistivity. ฀ 35 ฀

Recommend


More recommend