kondo problem to heavy fermions and local quantum
play

Kondo Problem to Heavy Fermions and Local Quantum Criticality - PowerPoint PPT Presentation

Kondo Problem to Heavy Fermions and Local Quantum Criticality Qimiao Si Rice University Advanced School Developments and Prospects in Quantum Impurity Physics, MPI-PKS, Dresden, May 30, 2011 Introduction to quantum critical point


  1. Kondo Problem to Heavy Fermions and Local Quantum Criticality Qimiao Si Rice University Advanced School – Developments and Prospects in Quantum Impurity Physics, MPI-PKS, Dresden, May 30, 2011

  2. • Introduction to quantum critical point • Kondo problem to heavy Fermi liquid Heavy fermion quantum criticality • • Perspective and outlook Q. Si, arXiv:1012.5440, a chapter in the book “ Understanding Quantum Phase Transitions ” , ed. L. D. Carr (2010).

  3. Pallab Goswami, Jed Pixley, Jianda Wu (Rice University) Stefan Kirchner (MPI-PKS, CPfS) Seiji Yamamoto (NHMFL, FSU) Jian-Xin Zhu, Lijun Zhu (Los Alamos) Kevin Ingersent (Univ. of Florida) Jianhui Dai (Zhejiang U.) Daniel Grempel (CEA-Saclay) S. Friedemann C. Krellner Y. Tokiwa Ralf Bulla (U. Cologne) P. Gegenwart S. Paschen S. Wirth N. Oeschler T. Westerkamp R. Küchler T. Lühmann T. Cichorek K. Neumaier O. Tegus O. Trovarelli C. Geibel F. Steglich P. Coleman E. Abrahams

  4. Phases and Phase Transitions Disorder Order (T>T order ) (T<T order )

  5. Continuous Phase Transitions: Criticality Disorder Order (T>T order ) (T<T order ) Criticality -- fluctuations of order parameter in d dimensions

  6. temperature T = B ∑ z z σ σ H - I i j < > ij ordered state T=0 A • A: every spin (spontaneously) points up = = m lim lim M / 1 Order parameter: N site → + N → ∞ h 0 site • B: every microstate equally probable: m=0

  7. temperature T = B ∑ z z σ σ H - I i j < > ij δ ∑ σ x - (I ) ordered i C state i T=0 A control parameter δ • A: every spin (spontaneously) points up = = m lim lim M / 1 Order parameter: N site → + N → ∞ h 0 site • B: every microstate equally probable: m=0 • C: every spin points along the transverse field: m=0

  8. Quantum Phase Transition temperature T = B ∑ z z σ σ H - I i j < > quantum ij critical δ ∑ σ x - (I ) ordered i C state i T=0 A control parameter δ QCP • A: every spin (spontaneously) points up = = m lim lim M / 1 Order parameter: N site → + N → ∞ h 0 site • B: every microstate equally probable: m=0 • C: every spin points along the transverse field: m=0

  9. Materials (possibly) showing Quantum Phase Transitions • Heavy fermion metals • Iron pnictides • Cuprates • Organic charge-transfer salts • Weak magnets (eg Cr-V, MnSi, Ruthenates) • Mott transition (eg V2O3) • Insulating Ising magnet (eg LiHoF4) • Field-driven BEC of magnons • MIT/SIT/QH-QH in disordered electron systems • Tunable systems (eg quantum dots, cold atoms)

  10. Heavy fermion metals as prototype quantum critical points CePd 2 Si 2 CeCu 6-x Au x H. v. Löhneysen et al N. Mathur et al Linear resistivity T N YbRh 2 Si 2 J. Custers et al

  11. T order temperature δ -- control QCP parameter

  12. T order temperature  ∞ @ QCP δ -- control QCP parameter Following Landau -- fluctuations of order parameter, , but in d+z dimensions

  13. T=0 spin-density-wave transition = + > d eff d z 4 , Gaussian no ω MF exponent scaling T

  14. Beyond the Order-parameter Fluctuations Inherent quantum modes may be important -- need to identify the additional critical modes before constructing the critical field theory.

  15. Critical Kondo Destruction -- Local Quntum Critical Point Kondo Destruction (f-electron Mott localization) at the T=0 onset of antiferromagnetism QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001); Phys. Rev. B68, 115103 (2003) P. Coleman et al, JPCM 13, R723 (2001)

  16. • Introduction to quantum critical point • Kondo problem to heavy Fermi liquid Heavy fermion quantum criticality • • Perspective and outlook

  17. Single-impurity Kondo Model: Local fermion bath moment S : spin-1/2 moment at site 0

  18. Single-impurity Kondo Model: – resistivity minimum (scattering increases as T is lowered!) – asymptotic freedom – Kondo screening (process of developing Kondo singlet correlations as T is lowered)

  19. Single impurity Kondo model • Kondo temperature:

  20. Single impurity Kondo model • Kondo temperature: • Kondo entanglement: singlet ground state

  21. Single impurity Kondo model • Kondo temperature: • Kondo entanglement: singlet ground state • Kondo effect (emergence of Kondo resonance): – Kondo-singlet ground state yields an electronic resonance – local moment acquires electron quantum number due to Kondo entanglement

  22. Kondo lattices:

  23. Kondo lattices: heavy Fermi liquid: •Kondo singlet •Kondo resonance

  24. J K >>W>>I • xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) • (1-x)N site lone moments:

  25. J K >>W>>I • xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) • (1-x)N site lone moments: (C. Lacroix, Solid State Comm. ’ 85) – projection: – (1-x)N site holes with U= ∞

  26. J K >>W>>I • xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) • (1-x)N site lone moments: (C. Lacroix, Solid State Comm. ’ 85) – projection: – (1-x)N site holes with U= ∞ • Luttinger ’ s theorem: (1-x) holes/site in the Fermi surface (1+x) electrons/site ---- Large Fermi surface!

  27. Heavy Fermi Liquid (Kondo Lattice) • The large Fermi surface applies to the paramagnetic phase, when the ground state is a Kondo singlet. • This can be seen through adiabatic continuity of a Fermi liquid. • It can also be seen, microscopically, through eg slave-boson MFT (Auerbach & Levin, Millis & Lee, Coleman, Read & Newns)

  28. Heavy Fermi Liquid (Kondo Lattice) 1 ω = • Kondo resonance G ( k , ) ω ε Σ ω c - - ( , ) k … k pole in Σ • … heavy electron bands

  29. Heavy Fermi Liquid (Kondo Lattice) 1 ω = • Kondo resonance G ( k , ) ω ε Σ ω c - - ( , ) k … k k-independent pole in Σ • … heavy electron bands

  30. Heavy Fermi Liquid Heavy electron bands Cond. electron band ε ( k ) E 1,2 (k) Kondo resonance

  31. Heavy Fermi Liquid Heavy electron bands Cond. electron band ε ( k ) E 1,2 (k) Kondo resonance Large Fermi surface

  32. • Kondo lattices: heavy Fermi liquid: •Kondo singlet •Kondo resonance No symmetry breaking, but macroscopic order

  33. Critical Kondo Destruction -- Local Quantum Critical Point Kondo Destruction (f-electron Mott localization) at the T=0 onset of antiferromagnetism Q. Si, arXiv:1012.5440, a chapter in the book “ Understanding Quantum Phase Transitions ” , ed. L. D. Carr (2010).

  34. • Introduction to quantum critical point • Kondo problem to heavy Fermi liquid • Heavy fermion quantum criticality • Perspective and outlook

  35. Critical Kondo Destruction -- Local Quantum Critical Point Kondo Destruction (f-electron Mott localization) at the T=0 onset of antiferromagnetism Q. Si, arXiv:1012.5440, a chapter in the book “ Understanding Quantum Phase Transitions ” , ed. L. D. Carr (2010).

  36. Kondo lattices: δ= T K 0 /I

  37. Kondo Effect at the AF QCP * is finite: • In the paramagnetic phase, E loc – Ground state is a Kondo singlet – Fermi surface is large – Call this “P L ” phase 0 , leads to • Increasing RKKY interaction, I/T K AF order, yielding AF QCP • What happens to the E loc * scale as the AF QCP is approached from the P L side?

  38. T=0 spin-density-wave transition smooth q-independence

  39. Extended-DMFT* of Kondo Lattice (* Smith & QS; Chitra & Kotliar) Mapping to a Bose-Fermi Kondo model: + self-consistency conditions – Electron self-energy Σ ( ω ) G(k, ω )=1/[ ω – ε k - Σ ( ω )] – “ spin self-energy ” M ( ω ) χ (q, ω )=1/[ I q + M( ω )]

  40. Extended-DMFT of Kondo Lattice Kondo Lattice Bose-Fermi Kondo J k fermion bath Local moment fluctuating g magnetic field + self-consistency

  41. ε -expansion of Bose-Fermi Kondo Model 1 − ε δ − ∑ ω ω Kondo ( w ) ~ p J K p 0< ε <1: Critical Kondo sub-ohmic breakdown dissipation g Kondo breakdown QS, Rabello, Ingersent, Smith, Nature ’ 01; PRB ’ 03; L. Zhu & QS, PRB ’02

  42. ε -expansion of Bose-Fermi Kondo Model 1 − ε δ − ∑ ω ω Kondo ( w ) ~ p J K p 0< ε <1: Critical Kondo sub-ohmic breakdown dissipation g Kondo breakdown Critical : QS, Rabello, Ingersent, Smith, Nature ’ 01; PRB ’ 03; L. Zhu & QS, PRB ’02 Crucial for LQCP solution

  43. Role of Berry phase S. Kirchner & QS, arXiv:0808.2647 is a geometrical phase and equals the area on the unit sphere enclosed by For ½< ε <1:  Retaining Berry phase yields ω/T scaling  Dropping Berry phase violates ω/T scaling

  44. Dynamical Scaling of Local Quantum Critical Point

  45. Continuous phase transition δ ≡ I RKKY / T K 0 J.-X. Zhu, S. Kirchner, R. Bulla & QS, PRL 99, 227204 (2007); J.-X. Zhu, D. Grempel, and QS, M. Glossop & K. Ingersent, PRL 99, 227203 (2007) Phys. Rev. Lett. (2003)

Recommend


More recommend