Superconductivity in Cu:Bi 2 Se 3 model order parameters and surface states Sungkit Yip Institute of Physics Academia Sinica, Taipei, Taiwan
Topological states (bulk) Surface /edge states Quantum Hall chiral E Quantum Spin Hall k // Topological Insulators
E 3D Dirac cone Bi2Se3, Bi2Te3, …. Spin-ARPES (Hsieh et al (Princeton))
Superconductor: can be topological non-trivial due to superconducting order parameter even though normal state band structure trivial Examples: ( ) | ( ) | k ik k ik x y x y planar state ~(2D TI) 0 k ik x y 0 k ik x y 3 He-B k ik k x y z ~(3D TI) k k ik z x y Balian-Werthamer (c.f. s-wave, topologically trivial; no surface states)
Cu:Bi 2 Se 3 superconducting (Princeton) Tc varies with Cu concentration, up to ~ 4K Ando: suggest fully gapped
Cu intercalates electron doped chemical potential ~0.4 eV (>> Tc) Wray et al, Nature, 10
Tunneling experiments: -- controversial Osaka 11: NIST, MD
Q: Superconducting order parameter ? Topology of the superconducting state ? Surface states? what is the role of the topological insulator state?
Bi2Se3: normal state (H Zhang et al Nat. Phys. 09; C X Liu et al PRB 10 ) ( , 2 , 3 ) D d E C U P D 3 3 3 2 d
band inversion at k=0 point D h Model for k ~ 0: ( ...) ( ..) ( ...)( ) H M B k A k s k s 0 0 0 N z z y y x x y x P 1 P 2 z z parity operator: z Fu and Berg 10: parity operator: x
E Dirac like Hamiltonian E k k 2m |k|
vac ˆ n x o | x o | x o | x o 1 2 1 2 1 2 1 2 Boundary condition 1 | 0 z TI 2 E Surface bound state as Dirac cone if sgn( ) 0 mv z ˆ Positive energy branch along v n k
Superconducting state: Fu and Berg 10: local pairs, investigated phase diagram with local interaction (6 total) | 1 1 , | 1 2 ,.... | 1 2 , | 1 2 Also noted, different symmetries: A 1 g Fully gapped, A 1 u topological superconducting state A 2 u | 1 2 E u | 1 2
surface bound states investigated, using this picture, by: Hao and Lee 11, Sato, Tanaka et al 12 Hsieh and Fu 12 Kamakage et al 12
Hao and Lee 11 : | 1 2 | 1 2 | 1 2 | 1 2 | 1 1 | 2 2 “ intrasite opposite spin” “ interorbital odd parity” | 1 2 | 1 2
Hsieh and Fu 12: | 1 2 | 1 2 Topological SC sgn( ) 0 mv z sgn( ) 0 mv z mirror index
Superconductivity with strong spin-orbit 80’s: heavy fermions Anderson, Blount, Rice, …. if normal state time-reversal and parity symmetric each k: two degenerate states (pseudospin) Cooper pairing between pseudospin pairing wavefunction: even parity : pseudospin singlet need only specify momentum dependence (even) odd parity: pseudospin triplet ( k ) spin-vector d d id d x y z k dependent d d id z x y odd in k
Yip and Garg 93 D 6 h complete basis set, up to invariant even functions odd
D 6 x P = Parity h D 3 d
D 3 d A 1u and E u : what linear combination?
I: Construct pseudospin basis II: project pseudospins: acting on a 2D Hilbert space k (1) P T -k -k up down 0 1 ( ) | | | | (2) k k k k k 1 0 x ( , , ) like an axial vector (pseudospin) x y z
(1) P and T orbital spin (on half of fermi surface) others defined by P and T k P T -k -k
(2) axial vector (proper rotational properties) unitary transformation the rest by P and T
Projection: 1 x ( / ) m see later (planar)
| 1 2 | 1 2 | 1 1 | 2 2 s-wave, A 1g A 1u
normal state TI : normal state trivial (or single band) p-h p-h mixing two band
| 1 2 | 1 2 A 1 u sgn( ) depends on mv z z cf. Balian Werthamer state // d k surface state: Dirac cone
Surface states (single band picture): odd parity ( k ) d k k out in d id d x y z d d d d id in out z x y Choose quantization axes along d d in out d in d out d in phase difference d ( if glancing incidence) E gap edge out positive branch along
E > 0 branch: Normal state Superconducting state ˆ if TI v n k ˆ A E sgn( ) mv v n k 1 z in u u follows from
A 1 u v < 0 sgn( ) 0 sgn( ) 0 sgn( ) 0 mv mv mv z z z single band single band two band or two band
A 1 u v < 0 sgn( ) 0 sgn( ) 0 sgn( ) 0 mv mv mv z z z single band single band two band or two band k | | k determined by superconducting order parameter // F k determined by normal state topology | | k // F
Q: Anomalous dispersion an indicator of TI ? NO: only d(k) on the Fermi surface matters 2 ( ...) ( ..) ( ...)( ) H m C k v k v k s k s 0 0 N x z z y x y y x z opp signs 2 m m Ck k on Fermi surface 0 can change from anomalous to ordinary for increasing C or | |
Yamakage et al 12 A 1 u | 1 2 | 1 2 E u | 1 2 | 1 2
Summary: pseudospin basis bulk order parameters orbital/spin pseudospin basis anomalous dispersions related to peculiar d(k) the dispersion for k < k F purely property of the superconducting order parameter dispersion at k> k F : normal state property except duplication due to particle-hole
Single band picture: , d 0 m = 0, line nodes on equator d k x y z z full two band: m m 2 2 m trivial insulator TI m m SC continuous at m=0 m W=1 if
( / ) m ' ' | 1 2 | 1 2 A 1 g m ’’ but can be smoothly connected if include | 1 1 | 2 2
Recommend
More recommend