pushing ultra low power digital circuits into the era
play

Pushing Ultra-Low-Power Digital Circuits into the Era Nanometer - PowerPoint PPT Presentation

Pushing Ultra-Low-Power Digital Circuits into the Era Nanometer David Bol Microelectronics Laboratory Ph.D public defense December 16, 2008 Pushing Ultra-Low-Power Digital Circuits into the Era Nanometer David Bol Microelectronics


  1. Pushing Ultra-Low-Power Digital Circuits into the Era Nanometer David Bol Microelectronics Laboratory Ph.D public defense December 16, 2008

  2. Pushing Ultra-Low-Power Digital Circuits into the Era Nanometer David Bol Microelectronics Laboratory Ph.D public defense December 16, 2008

  3. Why ultra-low power ? Low-power circuits Performances: 1 GOp/s Power < 1 W High-performance circuits Performances: 10 GOp/s Power < 100 W 2 D. Bol

  4. Hearing aids D. Bol

  5. ULP digital circuits Hearing aids and biomedical RFID tags Ultra-low-power circuits Performances: 10 k - 10 MOp/s Sensor Power < 1µW Wearable networks electroncics Smart Dust [Berkeley] 3 D. Bol

  6. Pushing Ultra-Low-Power Digital Circuits into the Era David Bol Microelectronics Laboratory Ph.D public defense December 16, 2008

  7. Moore’s law (1965) Every 18 months : x 2 [Intel] 5 D. Bol

  8. Moore’s law today 6 D. Bol

  9. Moore’s law Moore’s law without technology scaling Moore’s law with technology scaling 7 D. Bol

  10. Technology scaling Clock frequency 2008 130n 1 GHz 45nm 100 MHz 10 MHz 1 MHz 10 4 10 5 10 6 10 7 10 8 10 9 Transistor count 8 D. Bol

  11. Technology scaling Clock frequency 2008 130n 1 GHz 45nm 100 MHz ULP circuits 10 MHz ? 1 MHz 10 4 10 5 10 6 10 7 10 8 10 9 Transistor count 8 D. Bol

  12. Trend in ULP digital circuits Last chips [IEEE ISSCC’08]: 400 m n 5 6 300 Technology node [nm] Ultra-low-power 0.3V µC for 200 biomedical applications [Kwong] ITRS 100 65nm Ultra-low-power 0.32V 0 1998 2000 2002 2004 2006 2008 motion estimator [Kaul] Year 9 D. Bol

  13. Outline • Motivation • Basics: energy consumption of ULP digital circuits • Impact of technology scaling • Reaching E min • Reducing E min • ULP logic style for high-temperature applications • Roadmap for nanometer ULP circuits D. Bol

  14. Sources of power dissipation V dd I on 1/f clk OUT IN ‘1’ ‘0’ C L 10 D. Bol

  15. Sources of power dissipation V dd 1/f clk OUT IN ‘0’ ‘1’ I on C L 10 D. Bol

  16. Sources of power dissipation V dd 1/f clk OUT IN ‘0’ ‘1’ I on C L P dyn ~ f clk x C L x V dd2 10 D. Bol

  17. Sources of power dissipation V dd IN OUT ‘0’ ‘1’ I on C L P dyn ~ f clk x C L x V dd2 kg 11 D. Bol

  18. Power consumption 8-bit RCA multiplier in 130nm technology 1.5 ULP applications Minimum V dd [V] Speed = subthreshold logic limit 1 Functional limit 0.5 0 4 5 6 7 8 9 10 10 10 10 10 10 -3 10 2 P dyn ~ f clk x C L x V dd Power [W] -5 g 10 Frequency scaling n i l a c s e g a t l o -7 v / 10 y c n e u q e r F -9 10 4 5 6 7 8 9 10 10 10 10 10 10 Throughput [Op/s] 12 D. Bol

  19. Sources of power dissipation V dd I off = I leak IN OUT ‘0’ ‘1’ C L P stat ~ V dd x I leak 13 D. Bol

  20. Power consumption 8-bit RCA multiplier in 130nm technology 1.5 ULP applications Minimum V dd [V] Speed = subthreshold logic limit 1 Functional limit 0.5 0 4 5 6 7 8 9 10 10 10 10 10 10 -3 10 2 P dyn ~ f clk x C L x V dd e g a Power [W] -5 t l o 10 v / ULP applications y c n e g u n q i l a e c r F s -7 10 P stat = V dd x I leak -9 10 4 5 6 7 8 9 10 10 10 10 10 10 Throughput [Op/s] 14 D. Bol

  21. Energy consumption 8-bit RCA multiplier in 130nm technology 1.5 ULP applications Minimum V dd [V] Speed = subthreshold logic limit 1 Functional limit 0.5 0 4 5 6 7 8 9 10 10 10 10 10 10 Energy per operation [J] -12 2 E dyn ~ C L V dd 10 ULP applications e g a t E min l o v / y -13 c n 10 e g u n q i l a e E stat c r F s -14 10 4 5 6 7 8 9 10 10 10 10 10 10 Throughput [Op/s] 15 D. Bol

  22. Outline • Motivation • Basics: energy consumption of ULP digital circuits • Impact of technology scaling • Reaching E min • Reducing E min • ULP logic style for high-temperature applications • Roadmap for nanometer ULP circuits D. Bol

  23. Impact of technology scaling Gate Gate Source Drain T ox W Source Drain L L T ox , L , W ~ 1/S Gate W T ox L Source Drain L 16 D. Bol

  24. Impact of technology scaling Reduce V dd • I on Speed • C L kg • I leak 2 E dyn ~ C L V dd 2 E stat ~ I leak V dd • Variability ! Gate W T ox L Source Drain L 17 D. Bol

  25. r i a b i l i t y � a r r r 130nm technology Gate Gate Gate Source Drain Source Drain Continuous doping Straight line edges 45nm technology Gate Rough line edges Source Drain Discrete dopants 17 D. Bol

  26. Impact of technology scaling 8-bit RCA multiplier 1.5 Minimum V dd [V] Speed limit 1 Functional m n 0 3 0.5 limit 1 m n 5 4 0 4 5 6 7 8 9 10 10 10 10 10 10 -10 Energy per operation [J] 10 Variability -11 10 45nm E dyn -12 10 -13 10 1 3 0 n m -14 10 4 5 6 7 8 9 10 10 10 10 10 10 Throughput [Op/s] 18 D. Bol

  27. Impact of technology scaling 8-bit RCA multiplier 1.5 Minimum V dd [V] Speed limit 1 Functional m n 0 3 0.5 limit 1 m n 5 4 0 4 5 6 7 8 9 10 10 10 10 10 10 -10 Energy per operation [J] 10 ULP applications -11 10 45nm E dyn -12 10 E stat -13 10 1 3 0 n m -14 10 4 5 6 7 8 9 10 10 10 10 10 10 Throughput [Op/s] 18 D. Bol

  28. Impact of technology scaling Energy per operation x10 ! Energy per operation ULP applications 45nm m n 0 3 1 E min 2 1 Throughput 19 D. Bol

  29. What if you have to scale ? What if you have to scale ? Scale, scale, scale… Famous Intel co-founder Y I D D. Bol

  30. Outline • Motivation • Basics: energy consumption of ULP digital circuits • Impact of technology scaling • Reaching E min 1 • Reducing E min 2 • ULP logic style for high-temperature applications • Roadmap for nanometer ULP circuits D. Bol

  31. Technology versatility 1 High-Performance/ General-Purpose • Short L g • High I on • Thin T ox • High I leak • Low V t • Mid V dd 45nm technology Low-Power • Mid L g • Low I on • Mid T ox • Low I leak • High V t • High V dd 21 D. Bol

  32. Technology selection 1 8-bit RCA multiplier in 45 nm technology 0.8 Minimum V dd [V] LP 0.6 high-V t high-V t 0.4 GP General- 0.2 Purpose 0 4 5 6 7 8 10 10 10 10 10 -12 10 Energy per operation [J] GP LP -13 10 Low- Power ULP applications -14 10 4 5 6 7 8 10 10 10 10 10 Throughput [Op/s] 22 D. Bol

  33. Dual-V t assignement Std-V t Non-critical path Register Register Non-critical path clk clk 23 D. Bol

  34. Dual-V t assignement Std-V t Non-critical path Register Register High-V t Non-critical path High-V t clk clk 23 D. Bol

  35. Dual-V t assignement A B High-V t Critical path OUT IN Mult Std-V t N OUT 40 Typical 32 With variability 27 30 Maximum N 19 20 11 Inefficient 8 7 10 3 2 0 0.2 0.4 0.6 0.8 1 1.2 V dd [V] 24 D. Bol

  36. Circuit adaptation 1 +40% • Global process variations • Temperature variations +90% Energy per operation • Modeling errors a c t • Device aging u a l model target throughput 25 D. Bol

  37. Circuit adaptation 1 Energy per operation a c t u a l model adapt. target throughput 25 D. Bol

  38. Circuit adaptation 1 8-bit benchmark multiplier in 45 nm LP technology 0.5 0.6 a c t u a l 0.3 0.4 adapt V BB [V] V dd [V] 0 0.3 -0.3 target throughput 0.2 -0.6 0.1 1 10 2 V dd ASV (V BB =0V) Norm. energy per op. +70% 1.8 ABB (V dd =0.35V) V dd -V BB 1.6 1.4 1.2 V BB 1 0.8 0.1 1 10 Norm. throughput 26 D. Bol

  39. Circuit adaptation 1 8-bit benchmark multiplier in 45 nm LP technology 0.5 0.6 a c t u Minimum V BB [V] a l 0.3 dd [V] adapt 0.4 Minimum V 0 0.3 ASV (V BB =0V) -0.3 target throughput ABB (V dd =0.35V) 0.2 -0.6 0.1 1 10 2 V dd Norm. energy per op. 1.8 V dd -V BB 1.6 ABB better 1.4 1.2 V BB ASV 1 better 0.8 0.1 1 10 Norm. throughput 26 D. Bol

  40. Circuit adaptation 1 8-bit benchmark multiplier in 45 nm LP technology 0.5 0.6 a c t u Minimum V BB [V] a l 0.3 dd [V] adapt 0.4 Minimum V 0 0.3 ASV (V BB =0V) -0.3 target throughput ABB (V dd =0.35V) 0.2 -0.6 0.1 1 10 Reverse body bias 2 Norm. energy per op. is fine in 45 nm LP 1.8 technology 1.6 ABB better 1.4 Problem in 45 nm GP! 1.2 ASV What at 32 nm? 1 better 0.8 0.1 1 10 Norm. throughput 26 D. Bol

  41. Outline • Motivation • Basics: energy consumption of ULP digital circuits • Impact of technology scaling • Reaching E min 1 • Reducing E min 2 • ULP logic style for high-temperature applications • Roadmap for nanometer ULP circuits D. Bol

  42. E min modeling 90nm 45nm [Hanson, IEEE TED, pp. 175-185, 2008] D. Bol

  43. Evolution of E min New effects in nanometer technologies 60 C L S 2 50 40 E min [fJ] In all 30 flavors 20 10 0 130nm 90nm 65nm 45nm 28 D. Bol

  44. New effects in nanometer technologies 60 50 C L S 2 40 E min [fJ] 30 Var. 30 20 I gate 10 DIBL 25 New effects: 0 130nm 90nm 65nm 45nm S short • Bad short-channel S S long 20 E min [fJ] • Drain-induced barrier lowering 15 • Gate leakage 10 • Variability C L S 2 5 Gate I gate 0 Bulk Bulk opt. Source Drain DIBL 29 D. Bol

Recommend


More recommend