Genome Informatics Protein Hypernetworks Johannes K¨ oster, Eli Zamir, Sven Rahmann August 20, 2012 1 / 14
Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E 2 / 14
Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14
Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E scalability accuracy Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14
Protein Network Modelling Genome Informatics B A C G H Interaction maps (undirected graphs) F D I E scalability accuracy ? Protein Hypernetworks Differential equations d[ C ] (Law of Mass Action), d t = k on [ A ][ B ] − k off [ C ] Bayesian Networks, ... 2 / 14
Structure Genome Informatics 1 Protein Hypernetworks 2 Mining Protein Hypernetworks 3 Data Aquisition 3 / 14
G H I A G B Idea Genome Informatics Protein Network ( P , I ) B A C G H F D I E 4 / 14
Idea Genome Informatics Protein Network ( P , I ) � B A G H C I G H F A D G I B E 4 / 14
Idea Genome Informatics Protein Hypernetwork ( P , I , C ) Boolean Logic Protein Network ( P , I ) � Constraints C B A G H { G , H } ⇒ { I , H } C I G H F A D { A , B } ⇒ ¬{ G , B } G I B { G , B } ⇒ ¬{ A , B } E 4 / 14
B A A B G G G H I Mining Protein Hypernetworks Genome Informatics G B A H C I G Protein Hypernetwork ( P , I , C ) H F D A I G B E 5 / 14
Mining Protein Hypernetworks Genome Informatics G B A H C I G Protein Hypernetwork ( P , I , C ) H F D A I G B E Minimal network states ( Nec , Imp ) for q ∈ P ∪ I A B C A A B � H q ∧ c G H F G C A D G H I G c ∈ C E G D B I F F I F E I D C Satisfying model α : P ∪ I → { 0 , 1 } by tableau algorithm Nec := { q ′ ∈ P ∪ I | α ( q ′ ) = 1 } Imp := { q ′ ∈ P ∪ I | α ( q ′ ) = 0 due to active c ∈ C } 5 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) ¬ AB � BC ¬ CD � 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
Tableau Algorithm Genome Informatics Propositional Logic Tableau Algorithm for a given formula f AB ∧ ( AB ⇒ BC ) ∧ ( CD ⇒ ¬ DE ) explore depth-first the tree of deductions from root f AB each root-leaf-path without ( AB ⇒ BC ) contradiction is a satisfying model ( CD ⇒ ¬ DE ) Modifications ¬ AB � BC expand disjunctions from ¬ CD � left to right allow to pre-block subformulas to guide the algorithm to the right model 6 / 14
G H B A G I Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible 7 / 14
Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible G H B A + = � G I 7 / 14
Minimal Network States Genome Informatics Clashes Two minimal network states ( Nec , Imp ) and ( Nec ′ , Imp ′ ) are clashing iff Nec ∩ Imp ′ � = ∅ or Nec ′ ∩ Imp � = ∅ . not clashing pair → interactions simultaneously possible B B A A + = � G G 7 / 14
A B A B C G G H H F D I I I E A C G H F D I I E Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E 8 / 14
A C G H F D I I E Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E A B A B C Maximal combinations of minimal G G H H F D network states I I I E 8 / 14
Prediction of Protein Complexes Genome Informatics B A Network based complex prediction C G H ◮ e.g. dense regions F D I E A B A B C Maximal combinations of minimal G G H H F D network states I I I E A C Refined complexes G H F D ◮ no violated constraints I I E 8 / 14
B A AB BC BG AG AH C G H GH CF FG CD F HI DF D FI I EF ED EI E Prediction of Functional Importance Genome Informatics Minimal network state graph Minimal network states B A AB A B C A B A BC BG AG H AH C G H F G G C H GH A D CF G FG CD H I G F HI DF D G E FI D B I F I I F EF ED F EI I E D C E 9 / 14
Prediction of Functional Importance Genome Informatics Minimal network state graph Breadth first search from each node B B A AB A AB BC BC BG BG AH AG AH AG C C G G GH H GH H CF CF CD FG CD FG F HI F HI DF DF D D FI FI I I EF EF ED ED EI EI E E 9 / 14
Prediction of Functional Importance Genome Informatics Minimal network state graph Breadth first search from each node B B A AB A AB BC BC BG BG AH AG AH AG C C G G GH H GH H CF CF CD FG CD FG F HI F HI DF DF D D FI FI I I EF EF ED ED EI EI E E Perturbation Impact Score PIS ( P , I , C ) ( Q ↓ ) := | BFS ( Q ↓ ) | 9 / 14
Harvesting Constraints Genome Informatics Text-Mining Observation: Interaction dependencies are reported as single sentence natural language statements in literature. Tokenize full-text papers into relevant words and search for simple regular expression patterns. 71 new interaction dependencies from 59 000 human adhesome related papers. K¨ oster, Zamir, Rahmann. 2012 ... binding of Abl induces a conformational change in Cbl that allows binding of Src ... p . i p a p i p d i p p p . 10 / 14
Recommend
More recommend