prospects for theia an advanced liquid scintillator
play

Prospects for THEIA: An Advanced Liquid Scintillator Neutrino - PowerPoint PPT Presentation

Introducing THEIA Techniques and Methods Physics Program Backup Prospects for THEIA: An Advanced Liquid Scintillator Neutrino Experiment Daniele Guffanti on behalf of the THEIA collaboration Toyama, September 12 th 2019 D. Guffanti (JGU


  1. Introducing THEIA Techniques and Methods Physics Program Backup Prospects for THEIA: An Advanced Liquid Scintillator Neutrino Experiment Daniele Guffanti on behalf of the THEIA collaboration Toyama, September 12 th 2019 D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 1 / 15

  2. Introducing THEIA Techniques and Methods Physics Program Backup D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 2 / 15

  3. Introducing THEIA Techniques and Methods Physics Program Backup Water Čerenkov Detectors ◮ High transparency ◮ Topological information ⊲ Directionality ⊲ Particle ID ◮ Metal loading potential D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 2 / 15

  4. Introducing THEIA Techniques and Methods Physics Program Backup Liquid Scintillator Detectors Water Čerenkov Detectors ◮ High transparency ◮ High light yield ◮ Topological information ⊲ Low energy threshold ⊲ Good energy resolution ⊲ Directionality ⊲ Particle ID ◮ Effective purification methods ◮ Metal loading potential ◮ Fast timing → background coincidence tag ֒ ◮ Particle ID D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 2 / 15

  5. Introducing THEIA Techniques and Methods Physics Program Backup Liquid Scintillator Detectors Water Čerenkov Detectors ◮ High transparency ◮ High light yield ◮ Topological information ⊲ Low energy threshold ⊲ Good energy resolution ⊲ Directionality ⊲ Particle ID ◮ Effective purification methods ◮ Metal loading potential ◮ Fast timing → background coincidence tag ֒ ◮ Particle ID Recent advances in Ev. Reco. Techniques Photodetectors Technology Liquid Scintillator ↓ ↓ ↓ Next generation detectors Liquid Scintillators Water Čerenkov + D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 2 / 15

  6. Introducing THEIA Techniques and Methods Physics Program Backup Introducing THEIA 31 institutions from 6 countries ◮ Large volume (multi kton) ◮ Deep underground facility (SURF) ◮ Proven concept, new technology ⊲ Water-based Liquid Scintillator ⊲ Ultra-fast photodetection ↓ Flexible detector Broad physics program Concept paper: https//arxiv.org/abs/1409.5864 D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 3 / 15

  7. Introducing THEIA Techniques and Methods Physics Program Backup Cherenkov/Scintillation light separation From M. Wurm, Neutrino 2018 Angular distr. Timing D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 4 / 15

  8. Introducing THEIA Techniques and Methods Physics Program Backup Cherenkov/Scintillation light separation From M. Wurm, Neutrino 2018 Angular distr. Timing CHESS: CHErenkov-Scintillation Separation J. Caravaca et al., Eur. Phys. J. C (2017) 77:811 D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 4 / 15

  9. Introducing THEIA Techniques and Methods Physics Program Backup Cherenkov/Scintillation light separation From M. Wurm, Neutrino 2018 Angular distr. Timing Wavelength CHESS: CHErenkov-Scintillation Separation Dichroic filters J. Caravaca et al., Eur. Phys. J. C (2017) 77:811 Kaptanoglu,LuoandKlein,JINST (2019) 14:05 D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 4 / 15

  10. Introducing THEIA Techniques and Methods Physics Program Backup WbLS Water-based Liquid Scintillators M. Yeh et al, Nucl. Instrum. Meth. A (2011) 660 Composition Hydrophilic head Mix of water and LS made possible by surfactant molecules LS Hydrophobic tail(s) Properties Depends on relative concentrations Water 150 Čerenkov Attenuation length (m) (SNO, ◮ Reduced light yield SuperK, (although not linear with LS fraction) HyperK, ...) 100 Water-based Liquid Scintillator ◮ Increased transparency Water-like Oil-like ◮ loading of ◮ > 70% Water ◮ Comparable timing hydrophilic 50 ◮ Čer + Scint elements ◮ Metal loading possibility ◮ Cost effective (Gd, 7 Li, ...) LS (Bx, SNO+) 0 10 2 10 3 10 4 Light yield (ph/MeV) D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 5 / 15

  11. Introducing THEIA Techniques and Methods Physics Program Backup Fast Photodetectors New developments in Photodetector technology Many possible options SiPM arrays Fast PMT modules LAPPD D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 6 / 15

  12. Introducing THEIA Techniques and Methods Physics Program Backup Fast Photodetectors New developments in Photodetector technology Many possible options SiPM arrays Fast PMT modules LAPPD Large Area Picosecond PhotoDetector ◮ Bi-alkali photocathode with 20–25% QE ◮ Large area (20 × 20 cm 2 ) ◮ Large fill factor ◮ MCP based photodetectors ◮ Time resolution ≈ 60 ps ◮ Spatial resolution < 1 cm Developed by U. Chicago, Argonne NL, Iowa State U. and Incom Inc. Now commercially available D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 6 / 15

  13. Introducing THEIA Techniques and Methods Physics Program Backup The path towards THEIA Towards THEIA Amanda Weinstein, Neutrino #6 Christopher Grant, Neutrino #18 ANNIE @ FNAL ν booster WATCHMAN @ Buolby n multiplicity in ≈ 1 kton FV ν – N int. in water Čerenkov detector Water + 0.1% Gd loading Phase II - Gd loading Phase III Nuclear reactor monitoring run with WbLS planned ANNIE Ph II ANNIE Ph III Watchman 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 First experiment employing LAPPDs Significant improvement in ev. reco. WbLS and LAPPD even with only 5 LAPPDs (see A. Weinstein, New Technology #4) under consideration for a second phase (2027+) D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 7 / 15

  14. Introducing THEIA Techniques and Methods Physics Program Backup Large scale, multipurpose neutrino detector 2 options: ◮ Baseline: 25 kton (17 kton FV) - fit SURF cavern ◮ Ideal: 50 kton (35 kton FV) (or more) Tunable fraction of LS depending on the physics goal → Staged approach Low Energy Program High Energy Program ≈ 5 % WbLS ≈ 1 % WbLS ◮ Solar neutrinos ◮ Long baseline neutrino oscillation ◮ Antineutrino program ◮ Nucleon decay SN- ν , DSNB, Reactor ν + Isotope loading → 0 ν – ββ search ◮ D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 8 / 15

  15. Introducing THEIA Techniques and Methods Physics Program Backup High energy program Long-Baseline Neutrino Oscillation SURF @ Homestake : 4000 m.w.e. deep, LBNF beam 1300 km baseline DUNE THEIA 4 × 10 kton LAr TPCs module 25–50 kton WbLS experiment + Goal: Mass Hierarchy and δ CP Same beam, different systematics Reasons for THEIA-LBL ◮ Different set of systematics wrt DUNE ◮ Exploit recent improvement in ev. reco. (T2K) ◮ Possible significant improvement with WbLS: ⊲ Measurementoflow-energyhadronicproducts ⊲ Improved n detection (even w/out Gd loading) ⊲ Better energy resolution at low-energy (second oscillation maximum) D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 9 / 15

  16. Introducing THEIA Techniques and Methods Physics Program Backup High energy program Sensitivity study ◮ GLobeS framework, LBNF beam ◮ Current WČD performance assumed (no improvement from WbLS and LAPPD considered) Analysis ν e appearance 9 samples of ν e / ¯ ν e with different ev. topologies DUNE 10 kton CDR performance Mass Ordering Sensitivity THEIA 35 kton δ CP Sensitivity 6 20 Normal Ordering NO THEIA 17 kton χ 2 χ 2 ¯ ¯ 7 years 7 years DUNE 10 kton � � 15 Significance Significance 4 10 2 5 0 0 − 1 − 0 . 5 0 0 . 5 1 − 1 − 0 . 5 0 0 . 5 1 δ CP /π δ CP /π D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 10 / 15

  17. Introducing THEIA Techniques and Methods Physics Program Backup Low energy program Solar neutrino physics with THEIA JR Alonso et al, https://arxiv.org/abs/1409.5864 R. Bonventre & G.D. Orebi Gann, Eur. Phys. J. C (2018) 78: 435 10 12 Water ◮ Water Čerenkov (SK + SNO): ν ( 8 B ) pp Flux (cm − 2 s − 1 MeV − 1 ) Čerenkov 7 Be ◮ LS (Borexino): Low Energy ν ( pp , pep , 7 Be) pep 13 N ◮ WbLS : interesting energy region 10 7 WbLS 15 O 8 B ⊲ CNO neutrinos 17 F Very relevant for solar and stellar physics 8 B neutrino upturn hep ⊲ Exotic oscillation behaviour 10 2 Liquid Scintillator 10 0 10 1 Energy (MeV) D. Guffanti (JGU Mainz) Prospects for the THEIA neutrino experiment Toyama, 12.09.2019 11 / 15

Recommend


More recommend