probing for anomalous couplings in production and decay 4
play

Probing for anomalous couplings in production and decay 4 at CMS - PowerPoint PPT Presentation

1 Animated gifs on some slides. See ppt version or separate indico attachment. Probing for anomalous couplings in production and decay 4 at CMS Heshy Roskes (Johns Hopkins University) for the CMS collaboration The 26th


  1. 1 Animated gifs on some slides. See ppt version or separate indico attachment. Probing for anomalous ๐ผ๐‘Š๐‘Š couplings in production and decay ๐ผ โ†’ 4โ„“ at CMS Heshy Roskes (Johns Hopkins University) for the CMS collaboration The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017) UC Irvine June 20, 2017

  2. 2 Anomalous couplings โ€ข Search for anomalous ๐ผ๐‘Š๐‘Š couplings in production and decay in the ๐ผ โ†’ 4๐‘š channel โ€ข Kinematics of decay โ€ข New: kinematics of jets from VBF and ๐‘Š๐ผ production โ€ข Use matrix element (MELA) discriminants โ€ข optimally select VBF and ๐‘Š๐ผ events โ€ข optimally separate different contributions to the amplitude โ€ข Combine with Run 1 CMS analysis

  3. 3 ๐ผ 125 โ†’ 4โ„“ References: Run 1: โ€ข CMS-HIG-14-018 spin anomalous couplings Run 2: โ€ข CMS-PAS-HIG-16-041 properties โ€ข CMS-PAS-HIG-17-011 anomalous couplings โ€ข What is it? โ€ข How does it interact with other particles?

  4. 4 CMS&ATLAS results โ€ข Run 1: exclude spin 1 and 2 โ€ข Set limits on spin 0 anomalous couplings CMS ATLAS โ€ข โ€ข Study of the mass and spin-parity of the Higgs Evidence for the spin-0 nature of the Higgs boson candidate via its decays to Z boson pairs boson using ATLAS data ATLAS arXiv:1307.1432 CMS-HIG-12-041, arXiv:1212.6639 โ€ข Study of the spin and parity of the Higgs boson โ€ข Measurement of the properties of a Higgs in diboson decays with the ATLAS detector boson in the four-lepton final state ATLAS arXiv:1506.05669 arXiv:1312.5353, CMS-HIG-13-002 โ€ข โ€ข Test of CP Invariance in vector-boson fusion Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton production of the Higgs boson using the collisions at 7 and 8 TeV arXiv:1411.3441, CMS- Optimal Observable method in the ditau decay HIG-14-018 channel with the ATLAS detector ATLAS arXiv:1602.04516 โ€ข Limits on the Higgs boson lifetime and width ๐‘” from its decay to four charged leptons ฮ›๐‘… arXiv:1507.06656, CMS-HIG-14-036 VV Production (decay to ๐‘” าง ๐‘” ) โ€ข Combined search for anomalous pseudoscalar HVV couplings in VH production and H to VV decay arXiv:1602.04305, CMS-HIG-14-035 โ€ข โ€ข Measurement of inclusive and differential cross Measurements of properties of the Higgs boson sections in the H โ†’ ZZ โˆ— โ†’ 4l decay channel at and search for an additional resonance in the four- lepton final state at โˆšs = 13 TeV, CMS-PAS- 13 TeV with the ATLAS detector ATLAS-CONF- HIG-16-033 2017-032 โ€ข Run 2 results Constraints on anomalous Higgs boson couplings in production and decay Hโ†’4โ„“, CMS - PAS-HIG-17-011 This analysis

  5. 5 Kinematics ๐ผ โ†’ ๐‘Ž๐‘Ž โ†’ 4โ„“ ๐‘Š๐ผ VBF โ€ข For a given ๐‘› 4โ„“ , four-fermion system in production or decay is defined by: โ€ข 5 angles 2 of difermion systems โ€ข Two ๐‘Ÿ ๐‘Š ๐‘— โ€ข For the production+decay: two ๐ผ๐‘Š๐‘Š vertices โ€ข 13 independent observables remain

  6. 6 HVV amplitude 2 +๐‘Ÿ ๐‘Š2 2 ๐‘Ÿ ๐‘Š1 ๐‘Š๐‘Š + 2 ๐œ— ๐‘Š โˆ— ๐œ— ๐‘Š โˆ— + โ€ข ๐ต ๐ผ๐‘Š๐‘Š ~ ๐‘ 1 ๐‘› ๐‘Š ๐‘Š๐‘Š 2 1 1 2 ฮ› 1 โˆ— 1 ๐‘” โˆ— 2 ,๐œˆ๐œ‰ + ๐‘ 3 โˆ— 1 แˆš ๐‘Š๐‘Š ๐‘” ๐‘Š๐‘Š ๐‘” ๐‘” โˆ— 2 ,๐œˆ๐œ‰ ๐‘ 2 ๐œˆ๐œ‰ ๐œˆ๐œ‰ โ€ข ๐‘Š๐‘Š = ๐‘Ž๐‘Ž, ๐‘‹๐‘‹, ๐‘Ž๐›ฟ, ๐›ฟ๐›ฟ ๐‘Ž๐‘Ž = ๐‘ 1 ๐‘‹๐‘‹ = 2 , others = 0 โ€ข SM, tree level: ๐‘ 1 ๐‘Ž๐‘Ž = ๐‘ ๐‘— ๐‘‹๐‘‹ , call it โ€œ ๐‘ ๐‘— โ€ โ€ข Assume ๐‘ ๐‘— โ€ข Assume no ๐‘Ÿ 2 cutoff for anomalous couplings ๐‘Ž๐›ฟ โ€ข Measure ๐‘ 2 , ๐‘ 3 , ฮ› 1 , ฮ› 1 ๐‘Ž๐›ฟ,๐›ฟ๐›ฟ are already constrained from onshell photons โ€ข ๐‘ 2,3 ๐‘ ๐‘— 2 ๐œ ๐‘— โ€ข Parameterize as fractional cross section ๐‘” ๐‘๐‘— = 2 ๐œ ๐‘˜ ฯƒ ๐‘˜ ๐‘ ๐‘˜ ๐‘ ๐‘— and relative phase ๐œš ๐‘๐‘— = arg ๐‘ 1

  7. 7 Tools โ€ข JHUGen โ€ข Generate samples with arbitrary couplings โ€ข ฮค ฮค ๐‘•๐‘• ๐‘Ÿเดค ๐‘Ÿ โ†’ ๐‘Œ โ†’ ๐‘Ž๐‘Ž ๐‘‹๐‘‹ โ†’ 4๐‘” for ๐‘Œ spin 0, 1, 2 โ€ข VBF, ๐‘Š๐ผ , ๐‘•๐‘•๐ผ with 0, 1, or 2 QCD jets, ๐‘ข๐‘ข๐ผ , ๐‘๐‘๐ผ , ๐‘ข๐‘Ÿ๐ผ โ€ข MELA โ€” Matrix Element Likelihood Approach โ€ข Matrix element calculations โ€ข JHUGen for signal โ€ข MCFM for background โ€ข Calculate discriminants to distinguish hypotheses โ€ข Reweight generated samples to different hypotheses

  8. 8 Contributions โ€ข Background โ€ข ฮค ๐‘Ÿเดค ๐‘Ÿ ๐‘•๐‘• โ†’ ๐‘Ž๐‘Ž โ€ข ๐‘Ž + ๐‘Œ โ€ข Signal โ€ข ๐‘•๐‘•๐ผ , VBF, VH, ๐‘ข๐‘ข๐ผ โ€ข ๐ผ๐‘Š๐‘Š couplings in decay โ€ข ๐ผ๐‘Š๐‘Š couplings in production and decay โ€ข SM, anomalous, and interference contributions โ€ข Want to isolate each component to constrain couplings โ€ข 7 or 13 kinematic observables ( +๐‘› 4โ„“ for bkg separation) โ€ข too many to use them all

  9. 9 Discriminants โ€ข Two basic types of discriminants: ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘š๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Optimal to distinguish pure SM signal from alternate hypothesis โ€ข Alternate hypothesis could be background, another coupling model, or another signal production mode ๐‘ž ๐‘—๐‘œ๐‘ข โ€ข ๐ธ ๐‘—๐‘œ๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Together with ๐ธ ๐‘๐‘š๐‘ข , optimal to also isolate the interference contribution โ€ข ๐‘ž ๐‘ก๐‘—๐‘• , ๐‘ž ๐‘๐‘š๐‘ข , ๐‘ž ๐‘—๐‘œ๐‘ข are calculated through MELA using matrix element probabilities

  10. 10 Discriminants 1 ๐‘Š๐ถ๐บ ๐‘Ž๐ผ ๐‘‹๐ผ = ๐‘ž ฮค ฮค ฮค ๐‘Š๐ถ๐บ ๐‘Ž๐ผโˆ•๐‘‹๐ผ โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘ž ๐‘Š๐ถ๐บ ๐‘Ž๐ผโˆ•๐‘‹๐ผ +๐‘ž ๐ผ๐‘˜๐‘˜ ฮค โ€ข Separate associated production from QCD jets ๐‘Š๐ถ๐บ,๐‘‡๐‘ ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข VBF-jet category: ๐‘Š๐ถ๐บ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘Š๐ถ๐บ,๐ถ๐‘‡๐‘ > 0.5 โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข VH-jet category: ๐‘Ž๐ผ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘Ž๐ผ,๐ถ๐‘‡๐‘ > 0.5 โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐ถ๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข Untagged category: โ€ข Everything else ๐‘Ž๐ผ,๐‘‡๐‘ , ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐‘‡๐‘ max ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‡๐‘ and ๐ธ 2๐‘˜๐‘“๐‘ข ๐ถ๐‘‡๐‘ to get optimal separation โ€ข Use ๐ธ 2๐‘˜๐‘“๐‘ข for both extreme hypotheses

  11. 11 Discriminants 2 โ€ข Use 3D templates to parameterize the signal and background for each category โ€ข ๐‘ฌ ๐’„๐’๐’‰ , ๐ธ ๐‘๐‘— , ๐ธ ๐‘—๐‘œ๐‘ข ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘™๐‘• = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘™๐‘• โ€ข Used for all 3 categories โ€ข ๐‘› 4โ„“ + decay kinematics 105 GeV < ๐‘› 4โ„“ < 140 GeV

  12. 12 Discriminants 3 โ€ข ๐ธ ๐‘๐‘™๐‘• , ๐‘ฌ ๐’ƒ๐’‹ , ๐ธ ๐‘—๐‘œ๐‘ข ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘— = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘— โ€ข Tagged categories: use production ร— decay probabilities โ€ข Untagged: use decay probabilities only โ€ข Example: ๐ธ 0โˆ’ for the ๐‘” ๐‘3 analysis

  13. 13 Discriminants 4 โ€ข ๐ธ ๐‘๐‘™๐‘• , ๐ธ ๐‘๐‘— , ๐‘ฌ ๐’‹๐’๐’– ๐‘ž ๐‘—๐‘œ๐‘ข โ€ข ๐ธ ๐‘—๐‘œ๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Tagged categories: use production probabilities โ€ข Untagged: use decay probabilities

  14. 14 ๐‘ ๐‘— 2 ๐œ ๐‘— ๐‘” ๐‘๐‘— = ๐‘ 1 2 ๐œ 1 + ๐‘ ๐‘— 2 ๐œ ๐‘— + โ‹ฏ Likelihood fit โ€ข Assume real couplings, ๐œš ๐‘๐‘— = 0 or ๐œŒ โ€ข ggH, only one HVV vertex: ๐‘ ๐‘— ๐‘” ๐œ 1 ๐‘๐‘— = ๐‘ 1 ๐‘” ๐œ ๐‘— ๐‘1 โ€ข ๐‘ž ๐‘” ๐‘๐‘— , ฮฉ ~ ๐‘ 1 ๐ต 1 + ๐‘ ๐‘— ๐ต ๐‘— 2 2 โˆผ ๐‘ˆ 0 ฮฉ + ๐‘ ๐‘— 1 ฮฉ + ๐‘ ๐‘— cos ๐œš ๐‘๐‘— ๐‘ˆ ๐‘ˆ 2 ฮฉ ๐‘ 1 ๐‘ 1 โ€ข VBF or VH, two HVV vertices โ€ข ๐‘ž ๐‘” ๐‘๐‘— , ฮฉ 2 ๐‘ž๐‘ ๐‘๐‘’ + ๐‘ ๐‘— ๐ต ๐‘— ๐‘’๐‘“๐‘‘ + ๐‘ ๐‘— ๐ต ๐‘— ๐‘ž๐‘ ๐‘๐‘’ )(๐‘ 1 ๐ต 1 ๐‘’๐‘“๐‘‘ ) ~ (๐‘ 1 ๐ต 1 4 ๐‘˜ ๐‘ ๐‘— cos ๐‘˜ ๐œš ๐‘๐‘— ๐‘ˆ โˆผ เท ๐‘˜ ฮฉ ๐‘ 1 ๐‘˜=0

  15. 15 Signal strength โ€ข Want to decouple ratios of couplings ๐‘” ๐‘๐‘— from the signal strengths ๐œˆ ๐‘— โ€ข Allow signal strength for production via fermion couplings ๐œˆ ๐‘” and boson couplings ๐œˆ ๐‘Š to float independently โ€ข Constrained by category distribution of events

  16. 16 Event distribution โ€ข First number is for SM, (second) is for ๐‘” ๐‘3 = 1 โ€ข Use categorization for ๐‘” ๐‘3 analysis, others are a bit different โ€ข (In particular, fewer observed events in VBF-jets)

  17. 17 Results โ€ข Scans for each parameter โ€ข 13 TeV only, and combination with Run 1 result

  18. 18 More details: ๐‘” ๐‘3 โ€ข 1D projections help to explain โ€ข Small excess of events at smaller ๐‘’๐‘“๐‘‘ values of ๐ธ 0โˆ’ โ€ข Minimum away from 0 โ€ข ๐ธ ๐ท๐‘„ has small excess on the right โ€ข +0.3 is favored over -0.3 โ€ข Combine with Run 1: minimum at ๐‘” ๐‘3 = 0

  19. 19 More details: ๐‘” ๐‘3 โ€ข VBF and VH are sensitive to very small ๐‘” ๐‘3 โ€ข Once ๐‘” ๐‘3 โ‰ณ 0.01 , more favorable to set ๐œˆ ๐‘Š โ†’ 0

  20. 20 ๐œˆ ๐‘Š ๐œˆ ๐‘Š = 0.03 ๐œˆ ๐‘Š = 0.76 โ€ข Observe fewer VBF and VH events than expected โ€ข Best fit ๐œˆ ๐‘Š for ๐‘” ๐‘๐‘— = 0 is < 1 ๐œˆ ๐‘Š = 0.24 ๐œˆ ๐‘Š = 0.20 (values on plots) ๏ƒ˜ Narrow minima not as deep as expected

  21. 21 More details: ๐‘” ๐‘3 โ€ข Animations: each frame uses the best fit ๐œˆ ๐‘Š and ๐œˆ ๐‘” ๐‘Š๐ถ๐บโˆ•๐‘Š๐ผ are the cross section โ€ข ๐‘” ๐‘3 fractions for those processes โ€ข Watch what happens when ๐‘” ๐‘3 โ‰ฒ 0.01 See ppt version for animations or separate indico attachment

Recommend


More recommend