novel measurements of anomalous triple gauge couplings
play

Novel measurements of anomalous triple gauge couplings for the LHC - PowerPoint PPT Presentation

Novel measurements of anomalous triple gauge couplings for the LHC Elena Venturini SISSA and INFN Trieste 23 May 2018 PLANCK2018 1707.08060 with A.Azatov, J.Elias-Miro, Y.Reyimuaji In progress with G.Panico, F.Riva, A.Wulzer, A.Azatov,


  1. Novel measurements of anomalous triple gauge couplings for the LHC Elena Venturini SISSA and INFN Trieste 23 May 2018 PLANCK2018 1707.08060 with A.Azatov, J.Elias-Miro, Y.Reyimuaji In progress with G.Panico, F.Riva, A.Wulzer, A.Azatov, D.Barducci Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  2. LHC Exploration Search for new resonances → High energy Precision tests of SM → High luminosity Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  3. EFT EFT: Parametrization at E < Λ of NP with M ≥ Λ ( E ∼ EW scale, Λ ∼ BSM scale) Integration out of heavy fields (Assuming lepton number conservation): ∞ c n L BSM → L SM EFT = L SM + � � Λ n − 4 O n i i n =6 i Observables: c i c ∗ ( c i σ 6 xSM + h . c . ) σ EFT = σ SM + � � Λ 4 σ 6 x 6 j i + + ij Λ 2 i i , j � 1 ( c i σ 8 xSM + h . c . ) � � i + + O Λ 4 Λ 4 i Λ 2 σ SM ∼ E 2 σ 6 xSM Λ 4 σ SM ∼ E 4 σ 6 x 6 ij i Naively Λ 2 Λ 4 Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  4. Focus: D=6-SM interference Energy region with EFT validity and BSM sensitivity E 2 Λ 2 ≫ 0 ∧ E 2 Λ 2 ≫ E 4 Λ 4 Focus : D=6 - SM interference Naively LARGER for ENERGIES E ≪ Λ (EFT validity) Possible enlargement of the E-region with D=6 TRUNCATION validity Information about the SIGN of the Wilson coefficients Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  5. aTGC NP Sensitivity of Diboson (VV) production → Focus on a(nomalous)TGCs �� � L SM W + ,µν W − µ + W − ,µν W + W 3 ν + W 3 ,µν W + µ W − W 3 � TGC = ig , µ = c θ Z µ + s θ A µ µ ν ∆ L TGC (CP-even): ig ( W + ,µν W − µ + W − ,µν W + µ )( δ g 1 , z c θ Z ν + δ g 1 ,γ s θ A ν )+ 1 + ig ( δκ z c θ Z µν + δκ γ s θ A µν ) W + µ W − ν + + λ z c θ ig µ + λ γ s θ ig W + ,µν W − νρ Z ρ W + ,µν W − νρ A ρ 2 µ m 2 m 2 W W U(1) γ invariance ⇒ δ g 1 ,γ = 0 LEP-II BOUNDS λ z ∈ [ − 0 . 059; 0 . 017] δ g 1 , z ∈ [ − 0 . 054; 0 . 021] δκ z ∈ [ − 0 . 074; 0 . 051] Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  6. aTGC NP Sensitivity of Diboson (VV) production → Focus on a(nomalous)TGCs �� � L SM W + ,µν W − µ + W − ,µν W + W 3 ν + W 3 ,µν W + µ W − W 3 � TGC = ig , µ = c θ Z µ + s θ A µ µ ν ∆ L TGC | D = 6 (CP-even) [For example SILH basis]: ig ( D µ H ) † ˆ W µν D ν H = O HW ig ′ ( D µ H ) † B µν D ν H = O HB → EW-SSB 1 → ig ( W + ,µν W − µ + W − ,µν W + µ )( δ g 1 , z c θ Z ν + δ g 1 ,γ s θ A ν )+ + ig ( δκ z c θ Z µν + δκ γ s θ A µν ) W + µ W − ν s 2 U(1) γ invariance ⇒ δ g 1 ,γ = 0, D=6 EFT: δκ z = δ g 1 , z − θ δκ γ θ c 2 δ g 1 , z = m 2 δκ Z = m 2 � c HW − tan 2 θ c HB � Z W Λ 2 c HW , Λ 2 Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  7. aTGC NP Sensitivity of Diboson (VV) production → Focus on a(nomalous)TGC �� � L SM W + ,µν W − µ + W − ,µν W + W 3 ν + W 3 ,µν W + µ W − W 3 � TGC = ig , µ = c θ Z µ + s θ A µ µ ν ∆ L TGC | D = 6 (CP-even) [For example SILH basis]: λ z ig 3 ! ǫ abc W a ,µν W b g νρ W c ,ρ W + ,µν W − νρ W 3 ,ρ = O 3 W → New TGC : 2 µ µ m 2 W λ Z = m 2 W D=6 EFT : λ z = λ γ Λ 2 c 3 W 3 aTGC : δ g 1 , z , δκ γ , λ z LEP-I bounds ⇒ 3 independent parameters in VV production: 3 aTGCs Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  8. Energy behavior of helicity amplitudes Using Goldstone Equivalence formalism H ⊃ V L ( V = W , Z ) tr W µν W µν ⊃ ∂ V T V T V T , ( D µ H ) † D µ H ⊃ ∂ V L V T V L + vV T V T V L SM : Leading energy scaling of SM helicity amplitudes ∼ v q → V T W + T , V L W + ∼ E 0 , q → V T W + L / V L W + � � � � M q ¯ M q ¯ L T E D=6 EFT O HB = ig ′ ( D µ H ) † B µν D ν H ⊃ ∂ W L ∂ Z T ∂ W L + vW T ∂ Z T ∂ W L + v 2 W T ∂ Z T W T + . . . O HW = ig ( D µ H ) † ˆ W µν D ν H ⊃ ∂ V L ∂ V T ∂ V L + vV T ∂ V T ∂ V L + v 2 V T ∂ V T V T + . . . O 3 W = g 3! ǫ abc W a ,µν W b νρ W c ,ρ ⊃ ∂ V T ∂ V T ∂ V T + . . . µ Leading energy scaling of helicity amplitudes with D=6 operators: ∼ E 2 / Λ 2 c HB + E 2 / Λ 2 c HW ∼ E 2 / m 2 q → W − L W + W δ g 1 , Z + E 2 / m 2 � � M q ¯ W δκ Z L ∼ E 2 / Λ 2 c HW = E 2 / m 2 q → Z L W + � � M q ¯ Z δ g 1 , Z L ∼ E 2 / Λ 2 c 3 W = E 2 / m 2 q → V T W + � � M q ¯ W λ Z T Naively expected E 2 enhancement with respect to SM Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  9. Interference and interference suppression λ Z from WW δ g 1, Z from WW δ g 1, Z from WZ δκ Z from WW, x (- 5 ) δκ Z from WZ σ int / σ SM 6 · 10 - 6 4 · 10 - 6 2 · 10 - 6 0 600 800 1000 1200 m VV [ GeV ] SM × O HW ∼ E 2 in q ¯ δ g 1 , z : q → V L V L SM × O HB ∼ E 2 in q ¯ δκ z : q → W L W L ∼ E 0 in q ¯ q → W L , T Z T ( Interference suppression ) λ Z : SM × O 3W : more information needed SM : q ¯ q → V T ± V T ∓ (Helicity selection rule; Azatov, Contino, Machado, Riva [arXiv:1607.05236]) ˙ q → V T ± V T ± ( O 3 W ∝ w β α w γ β γ ˙ β w α α ˙ O 3W : q ¯ + ¯ w α ¯ w β ¯ w γ ) ⇒ γ ˙ ˙ ˙ ⇒ SM × O 3 W ∼ E 0 ∼ m 2 V → Interference suppression Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  10. Goal Goal: Overcome suppression of SM × O 3 W interference q → V T V T ) ∼ g 4 1 + c 3 W m 2 E 4 � � Λ 2 + c 2 SM V σ ( q ¯ 3 W E 2 Λ 4 Relaxation of the condition for dimension 6 truncation validity c 3 W m 2 E 4 c 8 E 4 E 8 � � � � Λ 2 , c 2 Λ 4 , c 2 V max > max → 3 W 8 Λ 4 Λ 8 c 3 W E 2 E 4 c 8 E 4 E 8 � � � � Λ 2 , c 2 Λ 4 , c 2 → max > max 3 W 8 Λ 4 Λ 8 Sensitivity to the sign of c 3W Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  11. Interference resurrection: 1 st method Not 2 → 2 BUT 2 → 2 → 4 Not helicity selection rule BUT NOT INTERFERENCE: non trivial distribution in the azimuthal angles of final fermions Duncan,Kane,Repko 85 p l l + W Z θ l - ν φ Z φ W p Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  12. Interference resurrection: 1 st method BSM TT × SM TT interference q → W T + Z i and Z → l + l − , i = ± (Neglecting V T V L ∼ v 2 → 3 : q ¯ E in SM) δ ( s − m 2 ⊃ π Z ) � ∗ � M SM M BSM l + M ∗ M Z T − → l − ¯ q ¯ q → W T + Z T − q ¯ q → W T + Z T + Z T + → l − ¯ l + 2 s Γ Z m Z q → W + l − ¯ ∝ E 2 → d σ int ( q ¯ l + ) Λ 2 cos(2 φ Z ) Naively expected energy growth d φ Z φ Z : Azimuthal angle of LH (or RH) lepton from Z w.r.t. � p z Modulated and non zero interference; zero after integration ( 2 → 2 ) BUT In Z → l + l − the helicity of l − (or l + ) is not fixed and observed Z for l − (or l + ) with fixed charge → φ c Observable: φ c Z = φ Z ∨ φ c Z = φ Z + π Ambiguity, BUT cos(2 φ Z ) modulation is not affected Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  13. Interference resurrection: 1 st method BSM TT × SM TT interference q → W i Z j and W → ν l Z → l + l − , i , j = ± q ¯ ∝ E 2 d σ int ( q ¯ q → WZ → 4 ψ ) Λ 2 (cos(2 φ Z ) + cos(2 φ W )) d φ Z d φ W Modulated non zero ∼ E 2 interference even integrating over φ Z or φ W BUT Ambiguity also on φ W In W → ν l � p ν is not observed p ν and φ W reconstruction → φ rec W = φ W ∨ φ rec W = π − φ W 1 � Ambiguity, BUT cos(2 φ W ) modulation is not affected BSM TT × SM LL interference ∝ E 2 d σ int ( q ¯ q → WZ → 4 ψ ) Λ 2 cos( φ Z + φ W ) d φ Z d φ W Hard to be observed due to φ Z helicity-charge (or φ W ) ambiguity cos( φ Z + φ W ) ∼ g 2 L cos( φ c Z + φ W ) + g 2 R cos( φ c Z + π + φ W ) = = ( g 2 L − g 2 R ) cos( φ c Z + φ W ) ∼ 0 [ g L ∼ − 0 . 28 , g R ∼ − 0 . 22] 1 Panico, Riva, Wulzer [arXiv: 1708.07823] Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  14. Interference resurrection: 1 st method σ int / σ SM · 10 3 60 3.0 4 2 4 200 1st reg. 2.5 40 2nd&3rd reg. 4th reg. 2.0 100 20 σ int / σ SM · 10 3 ϕ W 3 1 3 1.5 0 0 1.0 - 20 - 100 0.5 4 2 4 - 40 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 500 1000 1500 m WZ [ GeV ] ϕ Z Left: Differential interference cross section over SM one as a function the azimuthal angles φ W and φ Z (In [0 , π ]) for the events with W − Z invariant mass m WZ ∈ [700 , 800] GeV . Right: same quantity as a function of the m WZ binned in 2 bins of φ Z and 2 bins of φ W (cos(2 φ ) ≥ 0 , < 0). Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

  15. Interference resurrection: : 2 nd method Not 2 → 2 LO BUT NLO Virtual gluon exchange effects with α S 4 π suppression: Focus on 2 → 3 with real gluon emission Dixon, Shadmi 94 V T ± V T ± BSM g ∓ V T ± V T ± g ± , ∓ SM: q ¯ q → V ± V ∓ = ⇒ q ¯ q → V ± V ± g ∓ : qualitative change Total helicity ± 1 allowed both in SM and in O 3 W amplitudes Interference in q¯ q → VVj is not forbidden by helicity selection rules Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

Recommend


More recommend