Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Effective Operators In Top Quark Production and Decay Cen Zhang Department of Physics University of Illinois at Urbana-Champaign Pheno 2010 May 11
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Outline Introduction 1 Effective Field Theory Higher Dimensional Operators Anomalous Top Quark Interactions 2 Operators That Contribute at Leading Order Deviation From the SM: Top Quark Decay Deviation From the SM: Single Top Production Deviation From the SM: Top Pair Production The Anomalous Coupling Approach 3
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Effective Field Theory Effective Field Theory When searching for new physics beyond the SM, one might see it directly ( Z ′ , etc.) see indirect effects (for example, the exchange of Z ′ between fermions appears as four-fermion interaction at low energy.) In the latter case, we desire a model-independent approach to parameterize new physics.
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Effective Field Theory Effective Field Theory An effective field theory approach is a two step process. First, one integrates out all new heavy states and obtains effective interactions involving only fields of the SM. These effective higher-dimensional operators are then used to compute the deviations from the SM and compare with the experimental data. O ( 5 ) O ( 6 ) � � i i L eff = L SM + c i + c i Λ 2 + · · · Λ Λ can be regarded as the scale of new physics.
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary The Operators Higher Dimensional Operators Dimension 5: O 5 = c ij � � � φ T ǫ L j � L iT ǫφ C + h . c . Λ (Weinberg 1979) Dimension 6: 63 independent operators after the EOMs are applied. (Buchmuller and Wyler 1986, Aguilar-Saavedra 2009) There is no odd-dimensional operator that conserves baryon and lepton number.
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary The Operators Operators That Contribute to Top Quark Interaction 1 At leading order Λ 2 , ignore bottom quark mass, we found operator process O φ q = i ( φ + τ i D µ φ )(¯ q γ µ τ i q ) + h . c . top decay, single top q σ µν τ i t )˜ φ W i O tW = (¯ µν + h . c . top decay, single top q σ µν λ A t )˜ q , gg → t ¯ φ G A O tG φ = (¯ single top, q ¯ µν + h . c . t µ G B ρ ν G C µ gg → t ¯ O G 3 = g s f ABC G A ν t ρ O φ G = 1 gg → t ¯ 2 ( φ + φ ) G A µν G A µν t q γ µ q ) . and 8 four-fermions contact interactions such as (¯ u γ µ u )(¯
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Operators That Contribute at Leading Order The Wtb coupling O φ q = i ( φ + τ i D µ φ )(¯ q γ µ τ i q ) + h . c . q σ µν τ i t )˜ φ W i O tW = (¯ µν + h . c .
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Operators That Contribute at Leading Order The G 3 , Chromomagnetic Moment, and Higgs-Gluon Interactions q σ µν λ A u )˜ O tG φ = (¯ φ G A µν
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Operators That Contribute at Leading Order The G 3 , Chromomagnetic Moment, and Higgs-Gluon Interactions O G 3 = g s f ABC G A µ ρ G C ρ ν G B ν µ O φ G = 1 2 ( φ + φ ) G A µν G A µν
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Top Quark Decay Top Quark Decay The W helicity fractions are given by: √ m 2 2 C tW v 2 m t m W ( m 2 t − m 2 − 4 W ) t F 0 = m 2 t + 2 m 2 Λ 2 ( m 2 t + 2 m 2 W ) 2 W √ 2 m 2 2 C tW v 2 m t m W ( m 2 t − m 2 W ) + 4 W F L = m 2 t + 2 m 2 Λ 2 ( m 2 t + 2 m 2 W ) 2 W F R = 0
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Top Quark Decay Polarized Decay Rate In the top quark rest frame: d cos θ i = 1 + α i cos θ i 1 d Γ Γ 2 Effects of new operators √ − m 2 t − 2 m 2 2 vm t m 2 W ( m 2 t − m 2 W ) + C tW 16 W α b = m 2 t + 2 m 2 g Λ 2 ( m 2 t + 2 m 2 W ) 2 W m 6 t − 12 m 4 t m 2 W + 3 m 2 t m 4 W ( 3 + 8 ln ( m t / m W )) + 2 m 6 W α ν = m 6 t − 3 m 2 t m 4 W + 2 m 6 W √ 2 vm t m 2 W ( m 6 t − 6 m 4 t m 2 W + 3 m 2 t m 4 W ( 1 + 4 ln ( m t / m W )) + 2 m 6 24 W ) − C tW g Λ 2 ( m 2 t + 2 m 2 W ) 2 ( m 2 t − m 2 W ) 2 α ¯ = 1 e
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Single Top Production s,t-Channel Single Top Cao, Wudka and Yuan, 2007 Feynman Diagrams s-channel √ g 4 u ( u − m 2 C φ qv 2 g 4 u ( u − m 2 g 2 u ( u − m 2 t ) t ) g 3 su t ) 2 CtW mt v W ) 2 + 2 Cqq 1 b | 2 = 4 Σ | M u ¯ W ) 2 + − d → t ¯ 4 ( s − m 2 2 Λ 2 ( s − m 2 Λ 2 ( s − m 2 Λ 2 s − m 2 W ) 2 W t-channel √ g 4 s ( s − m 2 C φ q v 2 g 4 s ( s − m 2 g 3 st g 2 s ( s − m 2 1 t ) t ) 2 C tW m t v 2 C qq t ) Σ | M ub → dt | 2 = W ) 2 + − W ) 2 + 4 ( t − m 2 2 Λ 2 ( t − m 2 W ) 2 Λ 2 ( t − m 2 Λ 2 t − m 2 4 W √ g 4 u ( u − m 2 C φ q v 2 g 4 u ( u − m 2 g 3 ut g 2 u ( u − m 2 1 t ) t ) 2 C tW m t v 2 C qq t ) ut | 2 = Σ | M ¯ + − W ) 2 + db → ¯ 4 ( t − m 2 W ) 2 2 Λ 2 ( t − m 2 W ) 2 Λ 2 ( t − m 2 Λ 2 t − m 2 4 W
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Single Top Production Angular Dependence (at √ s = 2 m t ) s-channel t-channel( ¯ db → ¯ t-channel( ub → dt ) ut )
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Top Pair Production gg → t ¯ t Channel Feynman Diagrams
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Top Pair Production gg → t ¯ t Channel Cho and Simmons, 1994 The squared amplitude: ( m 2 − t )( m 2 − u ) 256 | M | 2 = 3 g 4 − g 4 ( m 2 − t )( m 2 − u ) + g 4 m 2 ( s − 4 m 2 ) tu − m 2 ( 3 t + u ) − m 4 1 s s s ( m 2 − t ) 2 s 2 4 24 6 + g 4 tu − m 2 ( t + 3 u ) − m 4 − 3 g 4 tu − 2 m 2 t + m 4 − 3 g 4 tu − 2 m 2 u + m 4 s s s ( m 2 − u ) 2 s ( m 2 − t ) s ( m 2 − u ) 6 8 8 √ 4 s 2 − 9 tu − 9 m 2 s + 9 m 4 2 C tG φ g 3 + 9 C G 3 g 4 m 2 ( t − u ) 2 s vm s + ( m 2 − t )( m 2 − u ) ( m 2 − t )( m 2 − u ) 3 Λ 2 8 Λ 2 − C φ G g 2 s m 2 s 2 ( s − 4 m 2 ) 16 Λ 2 ( s − m 2 )( t − m 2 )( u − m 2 )
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Results: Top Pair Production u , d ¯ d → t ¯ u ¯ t Channel Result √ 2 C tG φ g 3 s ( M 1 + M 2 ) + 32 s vm 1 s s t | 2 g 2 + C 1 Λ 2 M 1 + C 2 36 | M u ¯ = Λ 2 M 2 u → t ¯ u u 9 Λ 2 √ 2 C tG φ g 3 1 s ( M 1 + M 2 ) + 32 s vm s s t | 2 g 2 + C 1 Λ 2 M 1 + C 2 36 | M d ¯ = Λ 2 M 2 d → t ¯ d d 9 Λ 2 where 1 O 1 q 1 γ µ λ A q 1 )(¯ q 3 γ µ λ A q 3 ) (¯ = 4 q 4 4 g 2 9 s 2 ( 3 m 4 − m 2 ( t + 3 u ) + u 2 ) s 1 M 1 = q 1 γ µ τ i λ A q 1 )(¯ q 3 γ µ τ i λ A q 3 ) O 2 (¯ = 4 q 4 4 g 2 9 s 2 ( 3 m 4 − m 2 ( 3 t + u ) + t 2 ) 1 s M 2 = O 3 u 1 γ µ λ A u 1 )(¯ u 3 γ µ λ A u 3 ) = (¯ 4 q 4 C 1 C 1 4 q + C 2 4 q + C 3 = 1 O 4 d 1 γ µ λ A d 1 )(¯ u 3 γ µ λ A u 3 ) u 4 q (¯ = 4 q 4 C 2 C 5 4 q + C 7 = u 4 q O 5 q 3 u 1 )(¯ u 1 q 3 ) (¯ = 4 q C 1 C 1 4 q − C 2 4 q + C 4 = d 4 q O 6 q 3 d 1 )(¯ d 1 q 3 ) (¯ = 4 q C 2 C 6 4 q + C 7 = d 4 q O 7 q 1 u 3 )(¯ u 3 q 1 ) = (¯ 4 q
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Anomalous Couplings Compared with Effective Operators Wtb vertex: b i σµν q ν g g ¯ b Γ µ tW − ¯ b γ µ ( V L P L + V R P R ) tW − ¯ ( g L P L + g R P R ) tW − µ = µ + √ √ µ MW 2 2 √ v 2 2 C tW v 2 V L = 1 + C ∗ g R = φ q Λ 2 Λ 2 O φ q = i ( φ † τ i D µ φ )(¯ q γ µ τ i q ) q σ µν τ i t ) ˜ φ W i O tW = (¯ µν 1 ( V R and g L do not enter at order Λ 2 .) gtt vertex: t λ a i σµν q ν t λ a ¯ t Γ µ a tG a µ = g s ¯ 2 γ µ tG a µ + g s ¯ ( d V + id A γ 5 ) tG a µ mt √ √ vmt vmt 2 2 d V = gs Re C tG φ d A = gs Im C tG φ Λ 2 Λ 2 q σ µν λ a t ) ˜ φ G a O tG φ = (¯ µν
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Summary The effective theory is a model-independent approach to parameterize new physics beyond the SM. The anomalous top quark interaction can be described using 13 dimensions-six operators. The anomalous couplings can be related to the coefficients of the effective operators.
Introduction Anomalous Top Quark Interactions The Anomalous Coupling Approach Summary Summary The effective theory is a model-independent approach to parameterize new physics beyond the SM. The anomalous top quark interaction can be described using 13 dimensions-six operators. The anomalous couplings can be related to the coefficients of the effective operators.
Recommend
More recommend