on the minimization over sparse symmetric sets
play

On the Minimization Over Sparse Symmetric Sets: Projections, - PowerPoint PPT Presentation

On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms Amir Beck Technion - Israel Institute of Technology Haifa, Israel Based on joint work with Nadav Hallak and Yakov Vaisbourd OPT2014: Workshop on


  1. On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms Amir Beck Technion - Israel Institute of Technology Haifa, Israel Based on joint work with Nadav Hallak and Yakov Vaisbourd OPT2014: Workshop on Optimization for Machine Learning (NIPS 2014), Montreal, December 12, 2014 Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  2. Problem Formulation The sparse optimization problem min f ( x ) ( P ) s.t. x ∈ C s ∩ B , (1) f continuously differentiable (1) B is closed and convex (2) C s = { x ∈ R n : � x � 0 ≤ s } Difficulties: (a) C s ∩ B non-convex (b) C s ∩ B induces a combinatorial constraint No global optimality conditions, “solution” methods are heuristic in nature. Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  3. Example - Compressed Sensing Linear CS Recover a sparse signal x with a sampling matrix A and a measure b . � Ax − b � 2 min 2 ( CS ) x ∈ C s ∩ R n s.t. Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  4. Literature - CS Linear: 1 Conditions for reconstruction: RIP (Candes and Tao ’05), SRIP (Beck and Teboulle ’10), spark (Donoho and Elad ’03; Gorodnitsky and Rao ’97), mutual coherence (Donoho et al. ’03; Donoho and Huo ’99; Mallat and Zhang ’93) 2 Reviews: Bruckstein et al. ’09, Davenport et al. ’11, Tropp and Wright ’10. 3 Iterative algorithms: IHT (Blumensath and Davis ’08, ’09, ’12; Beck and Teboulle ’10), CoSaMP (Needell and Tropp ’09) Nonlinear: 1 Phase retrieval: Shechtman et al. ’13; Ohlsson and Eldar ’13; Eldar and Mendelson ’13; Eldar et al. ’13; Hurt. ’89 2 Nonlinear: optimality conditions (Beck and Eldar ’13), GraSP (Bahmani et al. ’13) Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  5. Example - Sparse Index Tracking Sparse Index Tracking Track an index b with at most s assets, with return matrix A . � Ax − b � 2 min 2 ( IT ) s.t. x ∈ C s ∩ ∆ n Example: Finance - track the S&P500 with a small number of assets Takeda et al ’12 Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  6. Example - Sparse Principal Component Analysis Sparse Principal Component Analysis Find the first principal eigen- vector of a matrix A . x T Ax max ( PCA ) x ∈ C s ∩ { y ∈ R n : � y � 2 ≤ 1 } s.t. Example: Finance - identify the group which explains most of the variance in the S&P500 Sample of works: Moghaddam, Weiss, Avidan 06’, d’Aspremont, Bach, El-Ghaoui 08’, d’Aspremont, El-Ghaoui, Jordan Lanckriet 07’, recent review: Luss and Teboulle ’13 Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  7. Objectives The sparse optimization problem min f ( x ) ( P ) x ∈ C s ∩ B , s.t. B closed and convex Main Objectives : Define necessary optimality conditions Develop corresponding algorithms Establish hierarchy between algorithms and conditions. The case B = R n : Beck, Eldar 13’ Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  8. Objectives The sparse optimization problem min f ( x ) ( P ) x ∈ C s ∩ B , s.t. B closed and convex Main Objectives : Define necessary optimality conditions Develop corresponding algorithms Establish hierarchy between algorithms and conditions. The case B = R n : Beck, Eldar 13’ However, we will also need to study and compute Orthogonal Projections on B ∩ C s . Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  9. Recap of Necessary First Order Opt. Conditions over Convex Sets: Stationarity ( ∗ ) min { f ( x ) : x ∈ S } , S closed and convex, f continuously differentiable. Equivalent Definitions of Stationarity : x ∗ stationary point iff Projection Form Variational Form � � x ∗ − 1 x ∗ = P S L ∇ f ( x ∗ ) �∇ f ( x ∗ ) , x − x ∗ � ≥ 0 ∀ x ∈ S for some L > 0 Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  10. Recap of Necessary First Order Opt. Conditions over Convex Sets: Stationarity ( ∗ ) min { f ( x ) : x ∈ S } , S closed and convex, f continuously differentiable. Equivalent Definitions of Stationarity : x ∗ stationary point iff Projection Form Variational Form � � x ∗ − 1 x ∗ = P S L ∇ f ( x ∗ ) �∇ f ( x ∗ ) , x − x ∗ � ≥ 0 ∀ x ∈ S for some L > 0 conditions are equivalent ⇒ independent of L most algorithms that use first order information converge to stat. points. condition relies on the properties/computatbility of P S ( · ) P S ( y ) = argmin {� y − x � 2 : y ∈ S } . Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  11. Why Study Orthogonal Projections? � z − x � 2 � � P C s ∩ B ( x ) = argmin 2 : z ∈ C s ∩ B To define optimality conditions, we need to compute and analyze properties of the orthogonal projection P C s ∩ B . Computing P C s ∩ B is in general a difficult task, but in fact tractable under symmetry assumptions on B Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  12. Why Study Orthogonal Projections? � z − x � 2 � � P C s ∩ B ( x ) = argmin 2 : z ∈ C s ∩ B To define optimality conditions, we need to compute and analyze properties of the orthogonal projection P C s ∩ B . Computing P C s ∩ B is in general a difficult task, but in fact tractable under symmetry assumptions on B Revised Layout: Projections, Optimality Conditions, Algorithms Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  13. Projection Onto Symmetric Sets Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  14. Definitions - Basics Σ n = permutation group of [ n ] x σ = reordering of x according to σ ∈ Σ n , ( x σ ) i = x σ ( i ) . Example (permutation) � T , and � x = 5 4 6 σ (1) = 3 , σ (2) = 1 , σ (3) = 2 , then � T . x σ = � 6 5 4 Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  15. Definitions - sorting permutations σ ∈ Σ n is a sorting permutation of x if x σ (1) ≥ x σ (2) ≥ · · · ≥ x σ ( n − 1) ≥ x σ ( n ) ˜ Σ( x ) is the set of all the sorting permutations of x Example (sorting permutation) � T , and � x = 7 9 8 9 σ (1) = 2 , σ (2) = 4 , σ (3) = 3 , σ (4) = 1 , then x σ = � T � 9 9 8 7 σ ∈ ˜ Also ˜ Σ( x ) where ˜ σ (1) = 4 , ˜ σ (2) = 2 , ˜ σ (3) = 3 , ˜ σ (4) = 1. Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  16. Definitions - Type-1 Symmetric Set D is a type-1 symmetric set if x ∈ D ⇒ x σ ∈ D σ ∈ Σ n set description type-1 nonneg. type-1 type-2 ∆ ′ 1 unit sum � n [ ℓ, u ] n ( ℓ < u ) box � n = { x ∈ R n : 1 T x = 1 } 1 ∆ ′ Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  17. Definitions - Nonnegative Type-1 Symmetric Set D is nonnegative if ∀ x ∈ D , x ≥ 0 set description type-1 nonneg. type-1 type-2 R n nonnegative orthant � � + ∆ n unit simplex � � Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  18. Definitions - Type-2 Symmetric Set D is a type-2 symmetric set if it is type-1 symmetric and x ∈ D , y ∈ {− 1 , 1 } n ⇒ x ◦ y ≡ ( x i y i ) n i =1 ∈ D set description type-1 nonneg. type-1 type-2 R n entire space � � B p [0 , 1]( p ≥ 1) p -ball � � Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  19. Summary of symmetry properties of simple sets set desc. type-1 non. t-1 type-2 R n entire space � � R n nonnegative orthant � � + ∆ n unit simplex � � ′ ∆ unit sum � n B p [0 , 1]( p ≥ 1) p -ball � � [ ℓ, u ] n ( ℓ < u ) box � Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  20. Symmetric Projection Monotonicity Lemma Symmetric Projection Monotonicity Lemma. Let D be a type-1 symmetric set, x ∈ R n , and y ∈ P D ( x ) . Then ( y i − y j ) ( x i − x j ) ≥ 0 for any i , j ∈ [ n ]. Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  21. Order Preservation Property Theorem. Let D be a type-1 symmetric set, and σ ∈ ˜ Σ( x ). Suppose that P D ( x ) � = ∅ . Then ∃ y ∈ P D ( x ) s.t. σ ∈ ˜ Σ( y ) That is x σ (1) ≥ x σ (2) ≥ · · · ≥ x σ ( n ) y σ (1) ≥ y σ (2) ≥ · · · ≥ y σ ( n ) Example: D = C 2 , P D ((3 , 2 , 2 , 0)) = { (3 , 2 , 0 , 0) , (3 , 0 , 2 , 0) } . Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

  22. Sparse Projection Onto Symmetric Sets Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimalit

Recommend


More recommend