Predation in Seagrass Beds: The Effects of Predators on Community Structure and Dynamics Levi S. Lewis Scripps Institution of Oceanography and Todd W. Anderson San Diego State University
Seagrasses 2006 2009
Seagrasses • Importance Uptake Nutrients • Trophic Ecology Stabilize Sequester Sediments Carbon
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Seagrasses • Importance • Trophic Ecology
Research Question Do manipulations of small predators result in cascading effects that ultimately impact eelgrass performance in San Diego Bay?
Study Site: San Diego Bay Shelter Island
Experimental Design Treatments : P redator N o P redator O pen C ontrol
Experimental Design Treatments : P NP O C
Cage Design 1.5 m 1 m
Cage Design Predator Enclosures 4 X Micrometris minimus 1.5 m 2 X Paralabrax clathratus 1 m
Experimental Array June - August, 2007 Block 6 Block 5 Block 4 Block 3 Block 2 Block 1
Visual Observations – 17 Scuba observations – Predator abundance & biomass
Parameters & Sampling June - July - Aug – Invertebrates • biomass – Epiphytic Loads • mass, chlorophyll – Eelgrass • leaf production
Parameters & Sampling June - July - Aug – Invertebrates • biomass – Epiphytic Loads • mass, chlorophyll – Eelgrass • leaf production
Parameters & Sampling June - July - Aug – Invertebrates • biomass – Epiphytic Loads • mass, chlorophyll growth 2 weeks – Eelgrass hole • leaf production punch
Fish Observations 80 4.3 1.0 1.3 1.7 B Fish Biomass (g m -2 ) 60 40 20 0 P NP O C
Invertebrates 80 E Inv. Biomass (mg g -1 ) b 60 40 a a a 20 0 P NP O C
Fouling on Eelgrass Leaves 0.6 B NS 0.5 Total Chl ( g cm -2 ) 0.4 0.3 0.2 0.1 0.0 P NP O C
Fouling on Eelgrass Leaves 0.6 2.0 A B Epiphytic Load (mg cm -2 ) NS 0.5 Total Chl ( g cm -2 ) 1.5 0.4 b 0.3 1.0 0.2 0.5 a a a 0.1 0.0 0.0 P NP O C P NP O C
Eelgrass Growth 14 E Leaf Production (mg d -1 ) a a a 12 a a a 10 8 b b 6 4 2 0 P NP O C
Summary 80 E b Inv. Biomass (mg g -1 ) 60 a 40 a a • Treatments were effective 20 0 • Predators had consistent effects P NP O C ≈ ≈ 2.0 • A Epiphytic Load (mg cm -2 ) No cage artifacts b 1.5 1.0 • Exclosures were sig. different 0.5 a a a (+) invert. biomass 0.0 (+) epiphytic load P NP O C 14 (-) eelgrass growth a a a E Leaf Production (mg d -1 ) 12 10 b 8 6 4 2 0 P NP O C
Summary 80 E b Inv. Biomass (mg g -1 ) 60 a 40 a a • Treatments effective 20 0 • Predator effects all comparable P NP O C ≈ ≈ 2.0 • A Epiphytic Load (mg cm -2 ) No cage artifacts b 1.5 1.0 • Exclosures sig. different 0.5 a a a (+) invert. biomass 0.0 (+) epiphytic load P NP O C 14 (-) eelgrass growth a a a E Leaf Production (mg d -1 ) 12 10 b 8 6 Why? 4 2 0 P NP O C
Epifauna Effects Iscyrocerid SG FOULING 25 Amphipod A. Ischyroceridae 20 Mass (mg g -1 ) 15 10 5 Chapman 2007 0 Sewell 1995 P NP O C
Epifauna Effects Iscyrocerid SG FOULING 25 Amphipod A. Ischyroceridae 20 Mass (mg g -1 ) 15 10 5 Chapman 2007 0 Sewell 1995 P NP O C Seagrass Limpet SG GRAZING 10 B. Acmaeidae 8 Mass (mg g -1 ) 6 4 2 Zimmerman et al. 1996 0 Jorgenson et al. 2007 P NP O C
Conclusions • Fishes affected invertebrate communities • Grazing & fouling inverts reduced eelgrass growth • Fishes had positive indirect effects on eelgrass growth
Final Conclusions Humans Williams & Heck 2001 Pauly et al. 1998 Jackson et al. 2001 - Indirect Effect Piscivores ??? Fishes ??? Grazers Williams & Ruckelhaus 1993 Neckles et al. 1993 Algae Jernakoff et al. 1996 Seagrass
Final Conclusions Humans Williams & Heck 2001 Pauly et al. 1998 Jackson et al. 2001 - Indirect Effect Piscivores ??? Fishes Lewis and Anderson 2010 Grazers Williams & Ruckelhaus 1993 Neckles et al. 1993 Algae Jernakoff et al. 1996 Seagrass
Final Conclusions Humans Piscivores Fishes Lewis and Anderson 2010 SG Foulers SG Grazers Algae Grazers Algae Seagrass
Experiment # 2: Spring 2008 Is these patterns consistent across seasons? • Similar effects of fishes on limpets and seagrass grazing. • Complex effects on algal production and seagrass growth. • May indicate seasonal differences in dynamics.
Functional Diversity and Trophic Structure within the Amphipoda of Seagrass Beds Farlin, JP 1 , Lewis, LS 2 , Anderson, TW 1 , Lai, CT 1 1 San Diego State University, 2 Scripps Institution of Oceanography
Results Prim. Production
Conclusions Significant Functional Diversity (Carbon Isotopes) Significant Trophic Structure (Nitrogen Isotopes) Amphipods exhibited significant trophic diversity and should not be considered as functionally redundant.
Funding
Funding
Project Summary (1) Support for: 1 M.S. Thesis, Levi Lewis (completed summer 2009) 1 Undergrad. Honors Thesis, James Farlin (completed fall 2009) > 12 undergraduate research assistants and volunteers (2) Presentations and Awards: - 2009. President’s Award . James Farlin. SDSU Res. Symposium - 2009. First Place . James Farlin. CSU State-wide Research Symposium - 2008. Deans Award. Levi Lewis. SDSU Research Symposium - 2008. Best Poster . Levi Lewis. Western Society of Naturalists - 2008. Levi Lewis. Southern California Academy of Sciences - 2007. Levi Lewis. Western Society of Naturalists (3) Manuscripts: - Lewis and Anderson. In prep. Effects of Predators in Seagrass Foodwebs - Farlin et al. In review. Functional Diversity of Amphipods in Seagrass Beds
Thank You
Recommend
More recommend