pattern avoiding permutations and dyson brownian motion
play

Pattern-avoiding permutations and Dyson Brownian motion Erik - PowerPoint PPT Presentation

Pattern-avoiding permutations and Dyson Brownian motion Erik Slivken, CNRS, University of Paris VII Joint work with Christopher Hoffman & Douglas Rizzolo Permutation Patterns 2018, Dartmouth College July 13th, 2018 Figure: Example of 231


  1. Pattern-avoiding permutations and Dyson Brownian motion Erik Slivken, CNRS, University of Paris VII Joint work with Christopher Hoffman & Douglas Rizzolo Permutation Patterns 2018, Dartmouth College July 13th, 2018

  2. Figure: Example of 231 -avoiding permutation

  3. Figure: A 321 -avoiding permutation

  4. Figure: σ ∈ S 10000 (231)

  5. Figure: τ ∈ S 10000 (321)

  6. Figure: The exceedance process, τ ( i ) − i

  7. Some Recent Probabilistic Results ◮ Miner, Pak 2013 – The shape of random pattern avoiding permutations ◮ Richard Kenyon, Daniel Kral, Charles Radin, Peter Winkler 2015 – Permutations with fixed pattern densities ◮ Madras, Pehlivan 2016 – Large deviations for permutations avoiding monotone Patterns ◮ Fr´ ed´ erique Bassino, Mathilde Bouvel, Valentin F´ eray, Lucas Gerin, Adeline Pierrot, 2017 – The Brownian limit of separable permutations ◮ Janson 2018 – Patterns in random permutations avoiding the pattern 321.

  8. Figure: An instance of a separable permutation (from Bassino et al 2017)

  9. Theorem (Hoffman, Rizzolo, S. ’14) Let Γ n ∈ Dyck 2 n be chosen uniformly at random. Let τ be the corresponding 321 -avoiding permutation given by the Billey-Jockusch-Stanley bijection. Let Z ( nt ) := | τ ( ⌊ nt ⌋ ) − nt | . We have joint convergence of the processes 1 √ Z ( nt ) → ❡ t 2 n and 1 Γ n (2 ns ) → ❡ s √ 2 n for all s , t ∈ [0 , 1] .

  10. A Dyck path γ and corresponding τ γ ∈ S n (321) ⇐ ⇒ n 0 2 n 0 τ γ γ

  11. 1 1 0.5 0.5 0 0 0 0.5 1 0 0.5 1 √ √ Figure: γ (2 nt ) / 2 n , Z ( nt ) / 2 n .

  12. 1 0.5 0 0 0.5 1 √ √ Figure: γ (2 nt ) / 2 n , Z ( nt ) / 2 n .

  13. 1 0.5 0 0 0.5 1 √ √ Figure: γ (2 nt ) / 2 n , Z ( nt ) / 2 n .

  14. Figure: A 4321-avoiding permutation

  15. Figure: The corresponding exceedance process.

  16. Figure: A 654321-avoiding permutation

  17. Figure: The corresponding exceedance process.

  18. Figure: A 54321-avoiding permutation

  19. Figure: The corresponding exceedance process.

  20. Injective map ρ : S n ( k + 1 , . . . , 1) → [ k ] n × [ k ] n by projecting the ranks of points 3 3 2 1 3 1 3 2 1 3 3 2 1 3 2 1 1 3 Figure: τ = 352182469 ◮ X = (3 , 3 , 2 , 1 , 3 , 2 , 1 , 1 , 3) (Ranks of positions) ◮ Y = (1 , 2 , 3 , 1 , 3 , 1 , 2 , 3 , 3) (Ranks of values)

  21. Some notation for ω = ( X , Y ) ∈ [ k ] n × [ k ] n : ◮ a ℓ i := # of ℓ s in X before i ◮ b ℓ i := # of ℓ s in Y before i ◮ c ℓ i := a ℓ i − b ℓ i ◮ u ℓ s := location of s th ℓ in X ◮ v ℓ s := location of s th ℓ in Y ◮ Ω n : { ω ∈ [ k ] n × [ k ] n : c ℓ n = 0 for all ℓ ∈ [ k ] } . ◮ ρ : S n → Ω n is injective.

  22. Definition An map γ : [ k ] n × [ k ] n → Z k i , · · · , c k γ (( X , Y )) = { ( c 1 i ) | i ∈ [ n ] } . Some observations: ℓ a ℓ ℓ b ℓ ◮ � i = � i = i ℓ c ℓ ◮ � i = 0 ◮ If S = γ (( X , Y )) then S ( t + 1) − S ( t ) = e i − e j for some i and j . ◮ If ω ∈ Ω n then S ω ( n ) = 0. ◮ γ ◦ ρ : S n → Ω n is injective.

  23. Definition (Traceless Dyson Brownian Motion) Let λ 1 , · · · , λ k be Brownian bridges on [0 , 1] conditioned to satisfy ◮ λ 1 ( t ) ≤ · · · ≤ λ k ( t ) ◮ � k i =1 λ i ( t ) = 0 for all t ∈ [0 , 1]. We define the traceless Dyson Brownian motion as Λ( t ) = ( λ 1 ( t ) , · · · , λ k ( t )) . Lemma � 1 � √ nS ω | ω ∈ B n − → d Λ

  24. Theorem (Hoffman, Rizzolo, S. 2018) For a permutation σ ∈ S n ( k + 1 · · · 1) and 1 ≤ ℓ ≤ k let ( u ℓ i , v ℓ i ) be the ith point of rank ℓ in σ . Define the scaled set of points � u ℓ n + 1 , v ℓ i − u ℓ � s ℓ i i σ ( i ) = √ n s ℓ σ be the linear interpolation of s ℓ and let ˆ σ and the points (0 , 0) , (1 , 0) . Finally let Λ be a traceless Dyson Brownian motion. Then, s 1 s k (ˆ σ , · · · , ˆ σ ) → d Λ .

  25. Idea of Proof: Use Simple Random Walk in γ ([ k ] n × [ k ] n ) conditioned to start and end at 0 and remain in the cone Cone := { ( z 1 , · · · , z k ) : z 1 ≤ · · · ≤ z k } Read Random Walks in Cones (Denisov and Wachtel 2015). Use there estimates to show a random walk in γ (Ω n ) ∩ Cone converges to Traceless Dyson Brownian Motion.

  26. Problem: γ ◦ ρ ( σ ) is not always in Cone... 3 2 2 1 3 2 1 2 Figure: S = γ ◦ ρ (4213) and S (3) = (0 , − 1 , 1) / ∈ Cone . These issues typically occur at the beginning and the end of the permutation and rare in the middle.

  27. ◮ Most walks that do not get too far outside the cone stay away from the boundary for the bulk of the walk. ◮ Most permutations have walks that spend most of the time well inside the interior of the cone. ◮ Create a coupling between uniform measure on walks in cones that start and end at 0 and uniform measure on walks of permutations avoiding a monotone decreasing sequence of length k + 1. ◮ Show that the coupled walks are close for most of the time.

  28. Thanks!

Recommend


More recommend