parameter estimation and uncertainty quantifjcation for
play

Parameter Estimation and Uncertainty Quantifjcation for Flow and - PowerPoint PPT Presentation

Parameter Estimation and Uncertainty Quantifjcation for Flow and Transport Processes Ole Klein WIAM 2016, Hamburg 02.09.2016 Ole Klein PE and UQ for Flow and Transport 02.09.2016 1 / 26 Introduction Richards equation 02.09.2016 PE and


  1. Parameter Estimation and Uncertainty Quantifjcation for Flow and Transport Processes Ole Klein WIAM 2016, Hamburg 02.09.2016 Ole Klein PE and UQ for Flow and Transport 02.09.2016 1 / 26

  2. Introduction Richards equation 02.09.2016 PE and UQ for Flow and Transport Ole Klein observations Motivation Parameter estimation should: Groundwater fmow equation, transport equation, Here: observations PDE-based modeling often leads to: 2 / 26 • High-dimensional discretized parameterization • Sparse (but not necessarily low-dimensional) state • Produce estimates of parameters and uncertainty • Be applicable for high-resolution parameter fjelds • Remain feasible for large numbers of state

  3. Introduction P : Parameter vectors 02.09.2016 PE and UQ for Flow and Transport Ole Klein Z : Measurement vectors U : System states Forward and Inverse Problem S : Parameter fjelds P Z U S 3 / 26 F I O G I : Input, Interpretation F : Forward model (continuous) O : Output, Observation (sparse) G : Forward model (discrete) Task: construct mapping Z → P to estimate parameters

  4. Introduction Example: Groundwater Flow Groundwater fmow equation: Convection-difgusion equation: Parameters P : log-storage term Z s , log-conductivity Y , initial conditions Parameters are underdetermined, problem is ill-posed and requires regularization Ole Klein PE and UQ for Flow and Transport 02.09.2016 4 / 26 F φ ( Y , Z s , φ 0 ; φ ) := S s ( Z s ) ∂ t φ + ∇ · j θ w ( Y , φ ) − q θ w = 0 j θ w ( Y , φ ) := − K ( Y ) ∇ φ = − exp ( Y ) ∇ φ F c ( Y , Z s , φ 0 , c 0 , φ ; c ) := θ∂ t c + ∇ · j C ( Y , φ, c ) − q C = 0 j C ( Y , φ, c ) := − D ( φ ) ∇ c + cj θ w Measurements Z : hydraulic head φ ( x i , t i ) , tracer concentration c ( x j , t j )

  5. Bayesian Inversion . . . . Prior Distribution . . Q p n P p n P . . . . n P Ole Klein PE and UQ for Flow and Transport 02.09.2016 . . 5 / 26 In more detail: . . . Treat parameters as random variables: p n P P ∼ N ( Q PP , P ∗ ) · · · p ∗         p 1 1 Q p 1 p 1 Q p 1 p 2 Q p 1 p n P p ∗ · · · p 2       2   Q p 2 p 1 Q p 2 p 2 Q p 2 p n P  ∼ N  ,                       p ∗ · · · Q p n P p 1 Q p n P p 2 • Stationary random fjelds → constituent matrices are block Toeplitz • Multiplication with Q PP using circulant embedding • Multiplication with Q − 1 PP is problematic

  6. Bayesian Inversion Maximum A Posteriori Apply Bayes’ theorem and drop constant term: Ole Klein PE and UQ for Flow and Transport 02.09.2016 6 / 26 Assume that measurement noise ǫ is Gaussian: ǫ = [ Z − G ( P )] ∼ N ( Q ZZ , 0 ) Z | P ∼ N ( Q ZZ , G ( P )) f Z · f P | Z = f P · f Z | P f P | Z ∝ f P · f Z | P Use maximizer P map of f P | Z as parameter estimate

  7. Bayesian Inversion ZZ 02.09.2016 PE and UQ for Flow and Transport Ole Klein with gradient ZZ Objective Function 7 / 26 For Gaussian parameters and Gaussian noise, we have: ( − 1 ]) [ � P − P ∗ � 2 PP + � Z − G ( P ) � 2 f P | Z ∝ exp Q − 1 Q − 1 2 Finding P map is equivalent to minimizing objective function L ( P ) := 1 PP + 1 2 � P − P ∗ � 2 2 � Z − G ( P ) � 2 Q − 1 Q − 1 ∇ L = Q − 1 PP [ P − P ∗ ] − H T ZP Q − 1 ZZ [ Z − G ( P )] ( H ZP : linearization of G around current estimate)

  8. Preconditioned Conjugate Gradients Prior Preconditioned Conjugate Gradients 02.09.2016 PE and UQ for Flow and Transport Ole Klein mesh width) 8 / 26 Apply Conjugate Gradients to objective function expressed in Q − 1/2 PP P Equivalent to using Q − 1 PP as preconditioner: δ P = − Q PP ∇ L | P i − 1 [+ conj. contrib. ] = − [ P i − 1 − P ∗ ] + Q PP H T ZP Q − 1 ZZ [ Z − G ( P )] • Allows using combined adjoint (full assembly of H ZP not needed) • Completely eliminates Q − 1 PP from algorithm (negative preconditioner cost) • Low-rank perturbation of identity (resulting convergence rate independent of

  9. Preconditioned Conjugate Gradients Conjugate Gradients 02.09.2016 PE and UQ for Flow and Transport Ole Klein ) Convergence behavior for 2D mesh of size Preconditioned Conjugate Gradients Normalized Objective Function Number of Iterations Prior Preconditioned Conjugate Gradients 9 / 26 Normalized Objective Function Number of Iterations 10 0 10 0 10 − 1 10 − 1 10 − 2 10 − 2 0 20 40 60 80 100 0 20 40 60 80 100 64 × 64 ( ), 128 × 128 ( ), 256 × 256 ( ) and 512 × 512 (

  10. Preconditioned Conjugate Gradients Prior Preconditioned Conjugate Gradients 02.09.2016 PE and UQ for Flow and Transport Ole Klein ) ) and unpreconditioned CG ( Gauss-Newton reference ( ), Time to solution for prior preconditioned CG ( number of measurements n Z 10 / 26 number of cells n P number of parameters n P = 256 × 256 number of measurements n Z = 16 10 4 1 , 000 t total [ s ] t total [ s ] 500 10 2 0 0 500 10 4 10 5

  11. Preconditioned Conjugate Gradients Example: 2D Groundwater Flow Synthetic Reference Ole Klein PE and UQ for Flow and Transport 02.09.2016 11 / 26 Estimate for n φ = 25 Estimate for n φ = 900

  12. Uncertainty Quantifjcation and Analysis PP 02.09.2016 PE and UQ for Flow and Transport Ole Klein PP PP PP PP Q post Uncertainty Quantifjcation PP PP H T 12 / 26 Q post ZZ H ZP Q post Provide linearized uncertainty quantifjcation through posterior covariance matrix: ] − 1 Q − 1 ZP Q − 1 [ PP := PP + H T Use transformation P → Q − 1/2 PP P again, equivalent to split PP = Q 1/2 PP [ I + M like ] − 1 Q 1/2 M like := Q 1/2 ZZ H ZP Q 1/2 ZP Q − 1 M like has low rank, use spectral decomposition M like = V Λ V T : I + V Λ V T ] − 1 Q 1/2 PP = Q 1/2 [ = Q 1/2 Q 1/2 [ I − V Υ V T ] ( with Υ = diag ( λ i /( λ i + 1))) = Q PP − Q 1/2 PP V Υ V T Q 1/2 PP , Approximating Q 1/2 PP through circulant embedding introduces systematic error!

  13. Uncertainty Quantifjcation and Analysis Example: 2D Groundwater Flow Ole Klein PE and UQ for Flow and Transport 02.09.2016 13 / 26 Uncertainty for n φ = 25 Uncertainty for n φ = 900

  14. Uncertainty Quantifjcation and Analysis Q post 02.09.2016 PE and UQ for Flow and Transport Ole Klein Quality Assurance / Sample Generation 14 / 26 Assumption: posterior distribution can be modeled as approx. PP Results of previous steps: P map and Q post ( ) P | Z ∼ N PP , P map • P map is mode of posterior distribution, not its mean • Q post PP is linearization of true posterior variance • Higher-order terms are neglected • Construct has to be checked for consistency with data set • Realistic applications require samples from posterior distribution

  15. Uncertainty Quantifjcation and Analysis measurement residuals, and generate conditional samples: PP Q post ZZ Quality Assurance / Sample Generation Z Z ZZ This can be used to check distribution of estimation error (if known) or Q post P P P Q post Z Z Ole Klein PE and UQ for Flow and Transport 02.09.2016 P 15 / 26 PP like Q post PP Q post PP ZZ Instead of spectral decomposition M like = V Λ V T , use ] − 1 Q 1/2 PP = Q 1/2 [ I + L like L T L like := Q 1/2 PP H ZP Q − 1/2 Performing singular value decomposition (SVD) L like = V P Λ 1/2 V T Z leads to PP = Q PP − Q 1/2 P Q 1/2 = Q 1/2 ] T Q 1/2 PP V + I − Υ + ] [ V + [ PP V P Υ V T ZZ = Q ZZ − Q 1/2 Z Q 1/2 = Q 1/2 ] T Q 1/2 ZZ V + I − Υ + ] [ V + [ ZZ V Z Υ V T I − Υ + ] 1/2 [ P with L P := Q 1/2 PP V + V + [ ] T PP = L P L T I − Υ + ] 1/2 [ Z with L Z := Q 1/2 ZZ V + V + [ ] T ZZ = L Z L T

  16. Examples Example: 2D Groundwater Flow 02.09.2016 PE and UQ for Flow and Transport Ole Klein Optimization stopped early, only normalized residuals refmect this ) measurements ), 900 ( ), 625 ( for 400 ( Normalized residuals and errors Count Value 16 / 26 Count Value Residual of PCG, tol = 10 − 4 Error of PCG, tol = 10 − 4 100 4 , 000 50 2 , 000 0 0 − 20 − 10 − 4 − 2 0 10 20 0 2 4

  17. Examples Example: 2D Groundwater Flow 02.09.2016 PE and UQ for Flow and Transport Ole Klein Optimization has converged, both measures indicate linearization is appropriate ) measurements ), 900 ( ), 625 ( for 400 ( Normalized residuals and errors Count Value 17 / 26 Value Count Residual of PCG, tol = 10 − 5 Error of PCG, tol = 10 − 5 80 4 , 000 60 40 2 , 000 20 0 0 − 4 − 2 − 4 − 2 0 2 4 0 2 4

  18. Examples Example: 3D Groundwater Flow Synthetic Reference (Interior) Estimation of 3D log-conductivity parameter fjeld Ole Klein PE and UQ for Flow and Transport 02.09.2016 18 / 26 Estimate for n φ = 225 (Interior) 128 × 128 × 16 = 2 . 65 · 10 5 parameters, 225 measurements Moments of normalized residual: ( − 0 . 195 , 0 . 960 , 0 . 029 , 2 . 99)

  19. Examples Example: 3D Groundwater Flow Synthetic Reference (Interior) Estimation of 3D log-conductivity parameter fjeld Ole Klein PE and UQ for Flow and Transport 02.09.2016 19 / 26 Estimate for n φ = 225 (Interior) 128 × 128 × 16 = 2 . 65 · 10 5 parameters, 225 measurements Moments of normalized residual: ( − 0 . 195 , 0 . 960 , 0 . 029 , 2 . 99)

Recommend


More recommend