overview
play

Overview Last time we discussed orthogonal projection. Well review - PowerPoint PPT Presentation

Overview Last time we discussed orthogonal projection. Well review this today before discussing the question of how to find an orthonormal basis for a given subspace. From Lay, 6.4 Dr Scott Morrison (ANU) MATH1014 Notes Second Semester


  1. Overview Last time we discussed orthogonal projection. We’ll review this today before discussing the question of how to find an orthonormal basis for a given subspace. From Lay, §6.4 Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 1 / 24

  2. Orthogonal projection Given a subspace W of R n , you can write any vector y ∈ R n as y = ˆ y + z = proj W y + proj W ⊥ y , y ∈ W is the closest vector in W to y and z ∈ W ⊥ . We call ˆ where ˆ y the orthogonal projection of y onto W . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 2 / 24

  3. Orthogonal projection Given a subspace W of R n , you can write any vector y ∈ R n as y = ˆ y + z = proj W y + proj W ⊥ y , y ∈ W is the closest vector in W to y and z ∈ W ⊥ . We call ˆ where ˆ y the orthogonal projection of y onto W . Given an orthogonal basis { u 1 , . . . , u p } for W , we have a formula to compute ˆ y : y = y · u 1 u 1 + · · · + y · u p ˆ u p . u 1 · u 1 u p · u p Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 2 / 24

  4. Orthogonal projection Given a subspace W of R n , you can write any vector y ∈ R n as y = ˆ y + z = proj W y + proj W ⊥ y , y ∈ W is the closest vector in W to y and z ∈ W ⊥ . We call ˆ where ˆ y the orthogonal projection of y onto W . Given an orthogonal basis { u 1 , . . . , u p } for W , we have a formula to compute ˆ y : y = y · u 1 u 1 + · · · + y · u p ˆ u p . u 1 · u 1 u p · u p If we also had an orthogonal basis { u p +1 , . . . , u n } for W ⊥ , we could find z by projecting y onto W ⊥ : y · u p +1 u p +1 + · · · + y · u n z = u n . u p +1 · u p +1 u n · u n However, once we subtract off the projection of y to W , we’re left with z ∈ W ⊥ . We’ll make heavy use of this observation today. Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 2 / 24

  5. Orthonormal bases In the case where we have an orthonormal basis { u 1 , . . . , u p } for W , the computations are made even simpler: ˆ y = ( y · u 1 ) u 1 + ( y · u 2 ) u 2 + · · · + ( y · u p ) u p . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 3 / 24

  6. Orthonormal bases In the case where we have an orthonormal basis { u 1 , . . . , u p } for W , the computations are made even simpler: ˆ y = ( y · u 1 ) u 1 + ( y · u 2 ) u 2 + · · · + ( y · u p ) u p . If U = { u 1 , . . . , u p } is an orthonormal basis for W and U is the matrix whose columns are the u i , then UU T y = ˆ y U T U = I p Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 3 / 24

  7. The Gram Schmidt Process The aim of this section is to find an orthogonal basis { v 1 , . . . , v n } for a subspace W when we start with a basis { x 1 , . . . , x n } that is not orthogonal. Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 4 / 24

  8. The Gram Schmidt Process The aim of this section is to find an orthogonal basis { v 1 , . . . , v n } for a subspace W when we start with a basis { x 1 , . . . , x n } that is not orthogonal. Start with v 1 = x 1 . Now consider x 2 . If v 1 and x 2 are not orthogonal, we’ll modify x 2 so that we get an orthogonal pair v 1 , v 2 satisfying Span { x 1 , x 2 } = Span { v 1 , v 2 } . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 4 / 24

  9. The Gram Schmidt Process The aim of this section is to find an orthogonal basis { v 1 , . . . , v n } for a subspace W when we start with a basis { x 1 , . . . , x n } that is not orthogonal. Start with v 1 = x 1 . Now consider x 2 . If v 1 and x 2 are not orthogonal, we’ll modify x 2 so that we get an orthogonal pair v 1 , v 2 satisfying Span { x 1 , x 2 } = Span { v 1 , v 2 } . Then we modify x 3 so get v 3 satisfying v 1 · v 3 = v 2 · v 3 = 0 and Span { x 1 , x 2 , x 3 } = Span { v 1 , v 2 , v 3 } . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 4 / 24

  10. The Gram Schmidt Process The aim of this section is to find an orthogonal basis { v 1 , . . . , v n } for a subspace W when we start with a basis { x 1 , . . . , x n } that is not orthogonal. Start with v 1 = x 1 . Now consider x 2 . If v 1 and x 2 are not orthogonal, we’ll modify x 2 so that we get an orthogonal pair v 1 , v 2 satisfying Span { x 1 , x 2 } = Span { v 1 , v 2 } . Then we modify x 3 so get v 3 satisfying v 1 · v 3 = v 2 · v 3 = 0 and Span { x 1 , x 2 , x 3 } = Span { v 1 , v 2 , v 3 } . We continue this process until we’ve built a new orthogonal basis for W . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 4 / 24

  11. Example 1     1 2 Suppose that W = Span { x 1 , x 2 } where x 1 = 1  and x 2 = 2  . Find an       0 3 orthogonal basis { v 1 , v 2 } for W . To start the process we put v 1 = x 1 . We then find     1 2 y = proj v 1 x 2 = x 2 · v 1 v 1 = 4 ˆ 1  = 2  .     v 1 · v 1 2   0 0 Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 5 / 24

  12. Now we define v 2 = x 2 − ˆ y ; this is orthogonal to x 1 = v 1 :       2 2 0 v 2 = x 2 − x 2 · v 1 v 1 = x 2 − ˆ y = 2  − 2  = 0  .       v 1 · v 1    3 0 3 So v 2 is the component of x 2 orthogonal to x 1 . Note that v 2 is in W = Span { x 1 , x 2 } because it is a linear combination of v 1 = x 1 and x 2 . So we have that       1 0     v 1 = 1  , v 2 = 0         0 3    is an orthogonal basis for W . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 6 / 24

  13. Example 2 Suppose that { x 1 , x 2 , x 3 } is a basis for a subspace W of R 4 . Describe an orthogonal basis for W . • As in the previous example, we put v 2 = x 2 − x 2 · v 1 v 1 = x 1 and v 1 . v 1 · v 1 Then { v 1 , v 2 } is an orthogonal basis for W 2 =Span { x 1 , x 2 } = Span { v 1 , v 2 } . • Now proj W 2 x 3 = x 3 · v 1 v 1 + x 3 · v 2 v 2 and v 1 · v 1 v 2 · v 2 v 3 = x 3 − proj W 2 x 3 = x 3 − x 3 · v 1 v 1 − x 3 · v 2 v 2 v 1 · v 1 v 2 · v 2 is the component of x 3 orthogonal to W 2 . Furthermore, v 3 is in W because it is a linear combination of vectors in W . • Thus we obtain that { v 1 , v 2 , v 3 } is an orthogonal basis for W . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 7 / 24

  14. Theorem (The Gram Schmidt Process) Given a basis { x 1 , x 2 , . . . , x p } for a subspace W of R n , define v 1 = x 1 x 2 − x 2 · v 1 v 2 = v 1 v 1 · v 1 x 3 − x 3 · v 1 v 1 − x 3 · v 2 v 3 = v 2 v 1 · v 1 v 2 · v 2 . . . x p − x p · v 1 x p · v p − 1 = v 1 − . . . − v p v p − 1 v 1 · v 1 v p − 1 · v p − 1 Then { v 1 , . . . , v p } is an orthogonal basis for W . Also Span { v 1 , . . . , v k } = Span { x 1 , . . . , x k } for 1 ≤ k ≤ p . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 8 / 24

  15. Example 3 The vectors     3 − 3 x 1 = − 4  , x 2 = 14        5 − 7 form a basis for a subspace W . Use the Gram-Schmidt process to produce an orthogonal basis for W . Step 1 Put v 1 = x 1 . Step 2 x 2 − x 2 · v 1 = v 2 v 1 v 1 · v 1       − 3 3 3  − ( − 100) = 14 − 4  = 6  .       50    − 7 5 3 Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 9 / 24

  16. Then { v 1 , v 2 } is an orthogonal basis for W . To construct an orthonormal basis for W we normalise the basis { v 1 , v 2 } :   3 1 1 √ u 1 = � v 1 � v 1 = − 4   50   5     3 1 1 1 1 √ √ u 2 = � v 2 � v 2 = 6  = 2     54  6   3 1 Then { u 1 , u 2 } is an orthonormal basis for W . Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 24

  17. Example 4   − 1 6 6 3 − 8 3   Let A =  . Use the Gram-Schmidt process to find an   1 − 2 6    1 − 4 3 orthogonal basis for the column space of A . Let x 1 , x 2 , x 3 be the three columns of A .   − 1 3   Step 1 Put v 1 = x 1 =  .   1    1 Step 2       6 − 1 3 x 2 − x 2 · v 1 − 8  − ( − 36) 3 1       = v 1 =  =  . v 2       − 2 1 1 v 1 · v 1   12        − 4 1 − 1 Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 11 / 24

  18. Step 3 x 3 − x 3 · v 1 v 1 − x 3 · v 2 = v 3 v 2 v 1 · v 1 v 2 · v 2       6 − 1 3  − 12  − 24 3 3 1       =       6 1 1   12   12       3 1 − 1   1 − 2   =  .   3    4 Thus an orthogonal basis for the column space of A is given by         − 1 3 1      3 1 − 2           ,  , .       1 1 3                 1 − 1 4   Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 12 / 24

Recommend


More recommend