outline
play

Outline Introduction and motivation Bootstrap methods for Mixed - PowerPoint PPT Presentation

The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R implementation of bootstrap procedures for mixed models Jos A. Snchez-Espigares Universitat Politcnica de Catalunya Jordi Ocaa Universitat de Barcelona


  1. The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R implementation of bootstrap procedures for mixed models José A. Sánchez-Espigares Universitat Politècnica de Catalunya Jordi Ocaña Universitat de Barcelona

  2. Outline • Introduction and motivation • Bootstrap methods for Mixed Models • Implementation details • Some examples • Conclusions

  3. (Generalized) Linear Mixed Models • Repeated measures or Longitudinal data: Response vector Y i for i th subject Y = Y Y ( ,..., )' i i in 1 i Observations on the same unit can be correlated • Conditional / Hierarchical approach: Between-subject variability explained by Random-effects b i b i N D ~ ( 0 , ) usually with Normal distribution = µ E Y b ( | ) ij i ij µ = θ = β + g X Z b ( ) ij ij ij ij i

  4. Estimation in (G)LMM • Random-effects are not directly observed • Estimation of parameters based on Marginal Likelihood, after integration of Random-effects n ∏ β φ = β φ = L D Y f Y D ( , , | ) ( | , , ) i i i = 1 n n i ∏ ∫ ∏ β φ f Y b f b D db ( | , , ) ( | ) ij ij i i i = = i j 1 1 • MLE: – Analytic solution in the Normal case (Linear Mixed Models) – Approximations are needed in the general case. • lme4 package: common framework for L-GL-NL/MM – Fast and efficient estimation for ML and REML criteria via Laplace Approximation/Adaptative Gaussian Quadrature for GLMM.

  5. Inference (G)LMM • Wald-type and F-tests ( summary ) – Asymptotic standard errors for the fixed effects parameters • Likelihood ratio test ( anova ) – Comparison of likelihood of two models • Bayesian Inference ( mcmcsamp ) – MCMC sampling procedure for posteriors on parameters • Some drawbacks: – Asymptotic results – Degrees of freedom of the reference distribution in F-test – Likelihood Ratio test can be conservative under some conditions – Tests on Variance components close to the boundary of the parameter space.

  6. Motivation • Inference based on bootstrap for LMM and GLMM • Inference on functions of parameters i.e. confidence intervals and hypothesis test for ratio of variance components • Robust approaches i.e. in presence of influential data and outliers • Effect of misspecification i.e. non-gaussian random effects and/or residuals

  7. Extension of the package lmer merBoot provides methods for Monte Carlo and • bootstrap techniques in generalized and linear mixed- effects models • The implementation is object-oriented • It takes profit of specificities of the applied algorithms to enhance efficiency, using less time and memory. • It has a flexible interface to design complex experiments.

  8. Bootstrap in linear models • For (Generalized) linear models (without random effects) there is only one random component � generation of the response variable according to the conditional mean. µ = β µ σ X Y N ~ ( , ) − µ = β g X Y F 1 ( ) ~ µ • Residual resampling: – Estimate parameters for the systematic part of the model – Resample random part of the model (parametric or empirical) – Some variants to deal with heterocedasticity (Wild bootstrap)

  9. Bootstrap in Mixed Models • In Mixed models, the systematic part has a random component � generation of the response variable in two steps: – Bootstrap of the conditional mean (function of the linear predictor) – Bootstrap of the response variable µ = β + θ µ σ X Zb b N Y N ~ ( 0 , ) ~ ( , ) − µ = β + θ g X Zb b N Y F 1 ( ) ~ ( 0 , ) ~ µ Two objects in the merBoot implementation: • – BGP : Set-up for the Bootstrap Generation Process – merBoot : Coefficients for the resamples and methods for analysis

  10. Implementation details ����� �������������� ����������������� BGP ���� � ���������� ��� ������� ���� �� ����� ������� ������ merBoot

  11. Bootstrap Generation Process ���������������������� • Fixed parameters β • Design matrices X i Z i • Random effects generator ( b i * ) * from a multivariate gaussian distribution – Parametric: generating b i ˆ * from – Semiparametric/Empirical (from a fitted object): sampling b i b i with replacement. – User-defined: any other distribution/criteria to generate b i * η = β + X Z b * * ij ij ij i

  12. Bootstrap Generation Process �������������� • Family (distribution F + link function g ) • Response generator ( Y ij * ) – Parametric: µ ij * = g -1 ( η ι j * ) , sample Y ij * ~F ( .; µ ij * ) – Semiparametric/Empirical (from a fitted object): * like in linear heterocedastic models, • Residual-based: builds Y ij depending on type of residuals = µ + ε Y * * * ij ij i • Distribution-based: resamples estimated quantiles

  13. Residuals in GLM − µ Y ˆ • Raw residuals: ij ij − µ Y ˆ ij ij = e • Pearson residuals: ij µ a V ˆ ( ) ij ij e = ij r • Standardized Pearson residuals: ij − µ h ˆ 1 ( ) ij − µ g Y g ˆ ( ) ( ) • Standardized residuals ij ij = l ij µ µ − on the linear predictor scale: a g V h 2 ˆ ˆ ' ( ) ( )( 1 ) ij ij ij ij = − µ r sign Y d • Deviance residuals: ˆ ( ) ij ij ij ij

  14. Empirical residual-based • Standardized Pearson residuals: – Resample e ij * from centered e ij   ˆ φ   = µ + µ Y V e * * * * ( ) – Calculate   ij ij ij ij a   i • Standardized Pearson residuals on the linear predictor scale: – Resample l ij * from l ij     ˆ φ     − = η + η µ Y g g V l * 1 * * * * ' ( ) ( ) – Calculate     ij ij ij ij ij a     i

  15. Empirical distribution-based • Randomized Quantile residuals (Dunn & Smyth,1996): – inverting the estimated distribution function for each observation Φ − to obtain exactly uniform ( q ij ) or standard normal residuals q 1 ( ( )) ij for diagnostics. Randomization needed for discrete distributions. • Resampling scheme with Quantiles Residuals for (G)LMM: = µ q F Y ˆ ˆ ( ; ) – Calculate ij ij ij q – Sample q ij * with replacement from ˆ ij − = µ Y F q * 1 * * ˆ ( ; ) – Generate ij ij ij

  16. Response generation • For Normal family and identity link function, all three strategies (pearson, linear predictor and quantile residuals) are the same. • In all the schemes, response is rounded to the nearest valid value, according to the family considered. • For discrete variables, randomization of the quantiles allows for continuous uniform residuals. • Transformation of the random effects in order to have the first and second moments equal to the parameters (adjusted bootstrap). • For all the schemes, if resample of residuals/quantiles is restricted to the subject obtained in the linear predictor level, a nested bootstrap is performed.

  17. Bootstrap Generation Process ������ ���������� ������������� ����������� ����������������� ������������������� ����������� ������������������� ����������������� ����������������� ������������������� ����������������������� ����������������������� �����������������������

  18. BGP Methods – generateLinpred * ~ η = β + b F X Z b * • BGPparam: i ij ij ij i θ ˆ ˆ η = β + b F b X Z b * * ~ (., ) • BGPsemipar: i n i ij ij ij i ˆ η = β + b F b w W X Z w b • BGPsemiparWild: * * * * ~ (., ) ~ i n i i ij ij ij i i – generate (lmer) � generateLinpred +Residual-based * ~ ε = µ + ε F Y * * * • BGPparam: θ ij ij ij ij ε ˆ = µ + ε F e Y * * * * • BGPsemipar: ~ (., ) ij n ij ij ij ij ε ˆ = µ + ε F e w W Y w * * * * * * ~ (., ) ~ • BGPsemiparWild: ij n ij i ij ij i ij ε ˆ = µ + ε F e Y * * * * ~ (., ) • BGPsemiparNested ij n i j ij ij ij * – generate (glmer) � generateLinpred +Distribution-based • BGPparam: − = q F Y F q * * 1 * • BGPsemipar: ~ ( ) µ ij ij ij µ * ij ij • BGPsemiparWild: • BGPSemiparNested

  19. Object merBoot ���� ������������������������������ ������������ ��������������� ������ ������� ��������������� ����� ����������������

Recommend


More recommend