OUTLINE JW Marriott Greg Kochalski Introduction Introduction Existing Structure Existing Structure Floor System Lateral System Structural Redesign Structural Redesign Floor System Lateral System Architectural Redesign Architectural Redesign Cost Analysis Cost Analysis Conclusions/Recommendations Conclusions/Recommendations
JW Marriott Introduction Greg Kochalski Project Information Project Information •24 story Marriott signature series Hotel •Located along the Grand River in downtown Grand Rapids, MI •340 Rooms •376,000 sq. ft. •Amenities include restaurant, lounge, business center, fitness center, and spa •Stylistic architecture with reflective glass cladding •Open Air Atrium •Heated Helipad
JW Marriott Introduction Greg Kochalski Site Plan Site Plan Downtown Downtown Gran Grand Ra d Rapids pids
JW Marriott Introduction Greg Kochalski Project Team Project Team owner- Alticor inc. Architect- Goettsch Partners and Beta Design Group Structural- Thornton Tomasetti Engineers Contractor- Pepper Construction and Rockford Construction MEP- Cosentini Associates
OUTLINE JW Marriott Greg Kochalski Introduction Introduction Existing Structure Existing Structure Floor System Lateral System Structural Redesign Structural Redesign Floor System Lateral System Architectural Redesign Architectural Redesign Cost Analysis Cost Analysis Conclusions/Recommendations Conclusions/Recommendations
Existing JW Marriott Structure Greg Kochalski Foundation Foundation •200 ton micro 200 ton micro piles piles •Pile caps located along Pile caps located along the perimeter and benea the perimeter and beneath th the core the core •4-7 micro piles per group 4-7 micro piles per group
Existing JW Marriott Structure Greg Kochalski Floor System Floor System •Flat Plate R.C. Flat Plate R.C. •Short spans- Short spans- 17 ft. 17 ft. •One way act One way action on •Typical bay approx 17x35 f Typical bay approx 17x35 ft •7.5 in. Slab 7.5 in. Slab • f’c = 5700 psi f’c = 5700 psi •Blade-Colu Blade-Columns located mns located along perimeter along perimeter •Transfer girders at level Transfer girders at levels 3-5 3-5 Eccentric Eccentric loading requires heavy loading requires heavy torsional reinforc torsional reinforcing in beam ing in beam
Existing JW Marriott Structure Greg Kochalski Blade-Columns Blade-Columns •Re Reduce spa duce spans •Limi Limit slab thickness t slab thickness •Maximize patron views Maximize patron views •Fit within interior Fit within interior partitions partitions •Boundary confin Boundary confinem ement a ent at edges edges Typical Floor with Radial Columns Confinement Typical bay
Existing JW Marriott Structure Greg Kochalski Lateral System Lateral System •Two pai Two pairs of shear walls s of shear walls •F’c F’c varies from 10 ksi aries from 10 ksi to 6ksi o 6ksi •Boundary elements Boundary elements for increase for increased d inertia in east-west inertia in east-west •12 in. thick in both 12 in. thick in both direct directions ions Hea Heavy conf vy confinemen inement t in in bo bound undar ary elem elemen ents ts
OUTLINE JW Marriott Greg Kochalski Introduction Introduction Existing Structure Existing Structure Floor System Lateral System Structural Redesign Structural Redesign Floor System Lateral System Architectural Redesign Architectural Redesign Cost Analysis Cost Analysis Conclusions/Recommendations Conclusions/Recommendations
JW Marriott Structural Redesign Greg Kochalski Proposal Summary Proposal Summary Design Goals Design Goals •Relocation to Mon location to Monterey, CA erey, CA •Achieve desired non- Achieve desired non- linear response linear response •New latera New lateral system l system •Avoid pitfalls of peer Avoid pitfalls of peer •New Post tension floor New Post tension floor review revi ew system system •Limi Limit ver t vertical walls to ical walls to •Use updated building code Use updated building code <3.0% of floor area % of floor area Building Codes Building Codes Grand Rapids Grand Rapids Mon Monterey erey •MBC 3003 ( MBC 3003 (IBC 2003 IBC 2003) •IBC 2006 IBC 2006 •ACI318 2002 ACI318 2002 •ACI318 2002 ACI318 2002 •ASCE7 2002 ASCE7 2002 •ASCE7 2005 ASCE7 2005
JW Marriott Post Tension System Greg Kochalski Characteristics •Typical span = 35 ft. •9.5 in. PT flat plate (l/45) •Class U system •Balance 85% dead load •½ in. 270 ksi strands •F’c = 4000 psi PT Floor Loads Design ASCE 7 Loads (psf) (psf) Dead 20 20 Live 40 40 Labeling Scheme
JW Marriott Post Tension System Greg Kochalski
JW Marriott Post Tension System Greg Kochalski Large banded tendons Small banded tendons
JW Marriott Post Tension System Greg Kochalski Average Stresses F M = − ± n f A S F M ( ) = = ± ± n 225 psi , 442 psi , 79 psi A S = + < 217 6 ' f f c = − < 667 0 . 3 f ' c = + < 79 2 f ' c = − 529 Slab Deflections Deflection Deflection Span (in) Equivalent AB 0.268 L/1150 CD 0.361 L/1150 *9.5 in. PT flat slab works* *9.5 in. PT flat slab works*
JW Marriott Lateral System Greg Kochalski Nonlinear Response •Force dissipation mechanism ensures integrity •Plastic hinging in beams, walls approach yielding •Detailed for proper ductility •Even deformations over height Peer Review •256 ft exceeds 240 ft height limit •Requires “code equivalent performance”… •Inherent uncertainties when interpreting code
JW Marriott Lateral System Greg Kochalski Analysis Methods •Equivalent lateral force method •Manual calculations •Etabs •Modal response (dynamic) analysis •Etabs Spectral Response Parameters •O.C.=II •S ds =0.97 •R=5.0 •S d1 =0.53 •C d =4.5 •S.D.C.= D •S.C. = C
JW Marriott Lateral System Greg Kochalski Etabs Cases & Combinations Scale Factors •Static analysis (accidental torsion) •EXZ1- ecc in x, cw moment •EXZ2- ecc. In –x, ccw moment •EYZ1 •EYZ2 •Dynamic analysis (member forces) •XSPECF •YSPECF •Dynamic analysis (Displacements) •XSPECD •YSPECD
JW Marriott Lateral System Greg Kochalski Pier and Spandrel Labeling
JW Marriott Lateral System Greg Kochalski Coupling Beams Interpreting the output Influence… 3 •Period 2.5 Period (s), V (normalized) •Shear (in walls) 2 Period •displacements 1.5 Vnormalized 1 Cracked section 0.5 0 . 2 ≥ × ( ) I I 0 ( ) effective + gross 2 0.00 0.20 0.40 0.60 0.80 1 3 h / l n Ie Ultimate shear Varying I eff I e V max Vnorm Period 0.10 189 0.814655 2.76 ≤ φ × × V 8 . 0 f ' bd 0.16 232 1 2.425 u c 0.5 317 1.366379 1.99 0.75 340 1.465517 1.90
JW Marriott Lateral System Greg Kochalski Coupling Beam Ultimate Shear Ultimate Shear Shears Design Group Shears Shear Level 0.8 V max V average 0.8 V max V average (K) (K) (K) (K) (K) Determined Group, and will Roof 90 24 111 be the Maximum of 23 113 22 121 122 122 122 122 •0.8V max 21 131 20 142 19 152 •V average 18 162 17 171 16 179 161 161 182 182 15 187 14 194 Detailing 13 201 12 208 Reinforcing must ensure 11 214 10 220 186 221 9 225 •Proper Ductility 8 229 7 232 186 213 •Failure in moment, not shear 6 231 5 228 4 220 186 205 3 205 2 Mezz 181 2 163
JW Marriott Lateral System Greg Kochalski
JW Marriott Lateral System Greg Kochalski Displacement <2.0% Height (code) <1.0% Height (imposed) 0.01H = 30 in. Max Displacement 16.6 in. (x) 21.4 in. (y) y x X direction Y direction
JW Marriott Lateral System Greg Kochalski Displacement Roof Max Displacement Story 23 Story 21 16.6 in. (x) Story 19 21.4 in. (y) Story 17 Story 15 Interpreting output delta y Level Story 13 delta x •Beam action in Y Story 11 •Frame action in X Story 9 Story 7 Story 5 Story 3 y 2nd x 0.00 5.00 10.00 15.00 20.00 25.00 Inches
JW Marriott Lateral System Greg Kochalski Shear Walls Design Criteria Direct Shear Flexure •Distributes by area •Distributes by inertia •Limit shear to: •Reinforce to resist tension ≤ φ × × × 4 . 0 ' V f t l u c
JW Marriott Lateral System Greg Kochalski Direct Shear ≤ φ × × × V 4 . 0 f ' t l u c = φ × × = 2 Pier 3 : 1100 k 3 . 59 f ' A , where A 37 . 33 ft 3 c v v = φ × × = 2 Pier 4 & 5 : 343 k 2 . 24 f ' A , where A 18 . 67 ft c v v 4 / 5 = φ × × = 2 Pier 6 : 876 k 4 . 11 f ' A , where A 26 . 0 ft c v v 6 = φ × × = 2 Pier 7 & 8 : 350 k 3 . 78 f ' A , where A * 19 . 5 ft c v v 7 / 8 = × ° + × ° 2 2 * A 9 . 77 ft cos( 33 ) 12 . 2 ft cos( 22 ) v 7 / 8
JW Marriott Lateral System Greg Kochalski Interpreting the Output A v shown in blue Theoretical A v (ft 2 ) 26 37.3 37.3 26 K v 0.7 1.0 1.0 0.7 DF v 0.21 0.29 0.29 0.21 Etabs Output (YSPECF) V OP 876 1100 1100 876 DF OP 0.22 0.28 0.28 0.22
Recommend
More recommend