orbital dynamics from double copy and eft
play

Orbital dynamics from double copy and EFT Talk at Radcor - PowerPoint PPT Presentation

Orbital dynamics from double copy and EFT Talk at Radcor Conference, Avignon, France, 11 Sep 2019, with Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, arXiv:1901.04424 (PRL), arXiv:1908.01493 Mao Zeng 11 Sep, 2019


  1. Orbital dynamics from double copy and EFT Talk at Radcor Conference, Avignon, France, 11 Sep 2019, with Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, arXiv:1901.04424 (PRL), arXiv:1908.01493 Mao Zeng 11 Sep, 2019 Institute for Theoretical Physics, ETH Zürich 1

  2. Outline 1. Introduction 2. Two-loop amplitudes 3. Effective potential between black holes 4. Discussions 2

  3. Introduction

  4. BIRTH OF AN ERA • LIGO / VIRGO detected gravitational waves: BH-BH (2015), BH-NS (2017), NS-NS (2019?) LIGO & VIRGO, arXiv:1602.03837 LIGO & VIRGO, arXiv:1710.05832 • Next-gen. experiments (LISA, CE, ET…): high S-N ratio, • Precision predictions necessary. 3 dominated by theory uncertainty .

  5. ANATOMY OF GRAVITATIONAL WAVE SIGNAL [Picture: Antelis, Moreno, 1610.03567] Inspiral Post-Newtonian / Post-Minkowskian / EOB Merger Numerical relativity / EOB resummation Ringdown Perturbative quasi-normal modes 4

  6. POST-NEWTONIAN EXPANSION Potential in post Newtonian expansion, e.g. in c.o.m. frame: [Talks by Christian Sturm, Andreas Maier] [Holstein, Ross, ’08; Neill, Rothstein, ’13] 5PN approximate [Bini, Damour, Geralico, ’19] Jaranowski, Schaefer, ’01] 4PN [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Schaefer, ’97; Damour, Jaranowski, Schaefer, ’97; Blanchet, Faye, ’00; Damour, 5 1PN, ∼ Gv 2 0PN, ∼ G ( ) ) V = − Gm 1 m 2 ⃗ p 2 1 + 3 ( m 1 + m 2 ) 2 ( 1 + r m 1 m 2 2 m 1 m 2 + G 2 m 1 m 2 ( m 1 + m 2 ) m 1 m 2 ( ) 1 + + . . . 2 r 2 ( m 1 + m 2 ) 2 1PN, ∼ G 2 1PN [Einstein, Infeld, Hoffman ’38] . 2PN [Ohta et al. , ’73] . 3PN [Jaranowski, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein…] 5PN static [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, ’19; Blümlein, Maier, Marquard, ’19]

  7. POST-MINKOWSKIAN EXPANSION Our new 3PM result: [Bern, Cheung, Roiban, Shen, Solon, MZ, PRL ’19; See also talk by Mikhail Solon 1908.01493 (long paper)] 6 Damour, Deruelle, Ibanez, Martin, Ledvinka, Schaefer, Bicak…] Bound orbit: GM / r ∼ v 2 . Hyperbolic orbit / scattering: expand with GM / r ≤ v ∼ c . [Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Goller, Bel, 0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN ( 1 + v 2 + v 4 + v 6 + v 8 + v 10 + v 12 + v 14 + . . . ) G 1 1PM ( 1 + v 2 + v 4 + v 6 + v 8 + v 10 + v 12 + . . . ) G 2 2PM ( 1 + v 2 + v 4 + v 6 + v 8 + v 10 + . . . ) G 3 3PM ( 1 + v 2 + v 4 + v 6 + v 8 + . . . ) G 4 4PM ( 1 + v 2 + v 4 + v 6 + . . . ) G 5 5PM ( 1 + v 2 + v 4 + . . . ) G 6 6PM . . .

  8. HOW QFT HELPS Donoghue, ’94; Holstein, Donoghue, ’04; Neill, Rothstein, ’13; Vaidya, ’14; Kosower, ? Maybee, O’Connell, ’18 …] 7 [picture: LIGO] formulation: Damgaard, Haddad, Helset, ’19] Hierarchy of scales in bound state systems: effective field theory : [NRGR: Goldberger, Rothstein, ’04; Porto, ’06; relativistic 2 3 5 6 1 4 Manifest gauge invariance through scattering amplitudes , with carefully defined classical limit [Iwasaki ’71; Gupta, Radford, ’79;

  9. Two-loop amplitude

  10. GRAVITY = (YANG MILLS) 2 4 5 5 5 5 5 4 4 Kawai-Lewellen-Tye (KLT) relations from string theory: 8 Simplification from “square” / double copy! Infinite tower, even 3-graviton vertex has ∼ 100 terms. ⟨ 12 ⟩ 3 ⟨ 12 ⟩ 6 A 3 ( 1 − 2 − 3 + ) = M 3 ( 1 − 2 − 3 + ) = ⟨ 23 ⟩⟨ 31 ⟩ , ⟨ 23 ⟩ 2 ⟨ 31 ⟩ 2 M tree ( 1 , 2 , 3 , 4 ) = − is 12 A tree ( 1 , 2 , 3 , 4 ) A tree ( 1 , 2 , 4 , 3 ) M tree ( 1 , 2 , 3 , 4 , 5 ) = is 12 s 34 A tree ( 1 , 2 , 3 , 4 , 5 ) A tree ( 2 , 1 , 4 , 3 , 5 ) + is 13 s 24 A tree ( 1 , 3 , 2 , 4 , 5 ) A tree ( 3 , 1 , 4 , 2 , 5 ) 4 dimensions: g ± ⊗ g ± ∼ h ±± .

  11. GRAVITY = (YANG MILLS) 2 , in “BCJ form” if 9 duality , i.e. double-copy construction. [Bern, Carrasco, Johansson, ’08] D dimensions: more convenient to use color-kinematics c j n j = g m − 2 ∑ Gauge theory amplitude: A tree m D j j n j satisfies same Jacobi identities as c j . n j n j ˜ ∑ Then gravity amplitude M tree = i , from c j → n j . m D j j

  12. TWO-LOOP CUTS [Bern, Cheung, Roiban, Shen, Solon, MZ, PRL ’19; 1908.01493 (long paper)] Very compact expression at 2 loops. Higher loops within reach! 1 1 4 4 4 10 2   d D x √ g ∫ S = 2 R + 1 ∑ D µ ϕ i D µ ϕ i − m i ϕ 2 ( )  − 1 i  i = 1 , 2 9 2 3 8 9 8 2 3 2 3 8 7 6 6 5 7 5 7 9 1 4 5 6 1 4 10 1 4 (c) (a) (b) From KLT: M tree ( 1 , 2 , 3 , 4 ) = − is 12 A tree ( 1 , 2 , 3 , 4 ) A tree ( 1 , 2 , 4 , 3 ) . { ]} ( ) C ( c ) [ GR = − i 2 t 2 m 4 1 m 4 Tr [( / 7 / 2 / 8 / 6 / 1 / 2 + 1 5 ) 4 ] + ( 7 ↔ 8 ) ( k 5 − k 8 ) 2 + t 6 ( k 6 + k 8 ) 2

  13. TWO-LOOP INTEGRAND classical effects. 11 Cuts merged into an integrand with diagrams & numerators: 2 3 2 3 2 3 2 3 5 6 7 1 4 1 4 1 4 1 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2 3 2 3 2 3 2 3 1 4 1 4 1 4 1 4 ( 5 ) ( 6 ) ( 7 ) ( 8 ) Diagram symmetries imposed. ∼ 90KB file. 4 and D dimensional results agree, up to “ µ ” terms with no

  14. INTEGRATING THE AMPLITUDE 12 • m 1 ̸ = m 2 , even planar master integrals unknown! Smirnov, '01; Lower topologies: Bianchi, Leoni, 1612.05609 Henn & Smirnov, '13; Duhr, Amplitudes '18; Heller, von Manteu ff el, Schabinger, '19 • Simplification 1: expand in small q ∼ ℏ / R ≤ m i , √ s . • Simplification 2: Expand in v ≪ 1 from potential d 4 ℓ ) localized on + ve energy matter poles. ∫ region. (

  15. NR INTEGRATION / VELOCITY EXPANSION 1 1 1 1 1 Plan: Series expansion around static limit, then resum by 1 13 1 matching to simple functions. 1 1 Step 1: determine integrand in potential region I T = ( E 1 + ω ) 2 − ( p + l ) 2 − m 2 × ω 2 − l 2 ω 2 − ( l + q ) 2 = 2 m 1 l 2 ( l + q ) 2 + . . . ω − ω P 1 = ( ω − ω P 1 )( ω − ω A 1 ) , ( E 1 + ω ) 2 − ( p + l ) 2 − m 2 √ 1 + 2 pl + l 2 . ω P 1 , ω A 1 = − E 1 ± E 2 ω P 1 ≪ | l | , ω A 1 ≈ − 2 m 1

  16. NR INTEGRATION / VELOCITY EXPANSION 2 in Mikhail Solon’s talk Only need 3D propagator integrals. More 1 2 Step 3: Spatial integration 2 1 1 14 1 2 energy matter poles. 1 Step 2: Energy integration, keeping only residues from + ve ∫ ∫ [ ] d ω 1 d ω 2 δ ( ω 1 + ω 2 ) 1 ω 1 − ω P 1 + i 0 + ω 1 ↔ ω 2 2 π = − i ∫ [ ] d ω 1 = 1 ω − ω P 1 + i 0 + − ω − ω P 1 + i 0 2 π d 3 l − i i ( ) ∫ 2 m 1 l 2 ( l + q ) 2 = − 32 m 1 | q | . ( 2 π ) 3

  17. RELATIVISTIC INTEGRATION matter poles IBP done by Kira [Maierhoefer, Usovitsch, Uwer, ’17] . 9 master integrals (H & 15 Conservative contribution: localize on cannot both collapose 1 − m 2 2 − m 2 ∫ ∫ δ ( ℓ 2 1 ) δ ( ℓ 2 2 ) N i d d ℓ 1 d d ℓ 2 I i = ∏ 7 i = 3 ℓ 2 i Exact v result from differential equations ∂ I i /∂ s = M ij I j . N topology) rescaled to O ( t 0 ) . Take t → 0 limit in M ij . Boundary condition: regular at threshold s = ( m 1 + m 2 ) 2 . Scalar result: H + xH = log( − t ) arcsinh ( | p | / m 1 ) + arcsinh ( | p | / m 2 ) . | p | ( E 1 + E 2 ) 128 π 2

  18. COMPARISON WITH UNEXPANDED INTEGRAL 16 m 1 = m 2 results in [Bianchi, Leoni, 1612.05609] , thanks to Loopedia.org . 25 master integrals x π 2 log x + log 3 x ( ) ( I H ) 3 log( − t ) + (non-singular in t ) � ϵ 0 = − 4 � 1 − x 2 3 log( − t ) − x ( π 2 log( − x ) + log 3 ( − x ) ) ( I xH ) + (non-singular in t ) . � ϵ 0 = − 4 � 1 − x 2 ϵ 0 = 4 π 2 log( − t ) log( − x ) + imaginary log( x ) → log( − x ) + i π, ( I H + I xH ) � �

  19. Effective potential between black holes

  20. PM POTENTIAL AS EFT MATCHING COEFFICIENT energy pole. Alternative QM treatment: [Cristofoli, Bjerrum-Bohr, Damgaard, Vanhove, ’19] Uncalculated IR divergent integrals cancel in matching. [From Cheung, Rothstein, Solon, ’18 PRL] 17 i ( k 0 , k ) = , √ • kinetic term with only + ve k 2 + m 2 k 0 − A,B + i 0 k k ′ = − iV ( k , k ′ ) , • k 0 -independent vertex. - k ′ - k Matching at L loops gives V ( k , k ′ ) with smooth ℏ → 0 limit. p k 1 k L p ′ M L -loop = M L -loop · · · = EFT full - p - k 1 - k L - p ′

  21. RESULT: 3PM CONSERVATIVE POTENTIAL 3 EFT matching coefficients 2 12 1 [Bern, Cheung, Roiban, Shen, Solon, MZ, PRL ’19; 1908.01493 (long paper)] 4 3 18 √ √ p 2 + m 2 p 2 + m 2 H 3PM ( p , r ) = 2 + V 3PM ( p , r ) 1 + ( G ) n V 3PM ( p , r ) = ∑ c n ( p 2 ) | r | n = 1 m = m 1 + m 2 , ν = m 1 m 2 , E = E 1 + E 2 , ξ = E 1 E 2 E 2 , γ = E m , σ = p 1 · p 2 m 2 m 1 m 2 [ ] c 1 = ν 2 m 2 c 2 = ν 2 m 3 − 4 νσ ( 1 − 2 σ 2 ) ν 2 ( 1 − ξ ) ( 1 − 2 σ 2 ) 2 ( 1 − 2 σ 2 ) ( 1 − 5 σ 2 ) , , − γ 2 ξ γ 2 ξ γξ 2 γ 3 ξ 2 √ 4 ν ( 3 + 12 σ 2 − 4 σ 4 ) arcsinh [ σ − 1 c 3 = ν 2 m 4 ( 3 − 6 ν + 206 νσ − 54 σ 2 + 108 νσ 2 + 4 νσ 3 ) − γ 2 ξ √ σ 2 − 1 − 3 νγ ( 1 − 2 σ 2 ) ( 1 − 5 σ 2 ) − 3 νσ ( 7 − 20 σ 2 ) + 2 ν 3 ( 3 − 4 ξ ) σ ( 1 − 2 σ 2 ) 2 2 ( 1 + γ )( 1 + σ ) 2 γξ γ 4 ξ 3 ν 2 ( 3 + 8 γ − 3 ξ − 15 σ 2 − 80 γσ 2 + 15 ξσ 2 ) ( 1 − 2 σ 2 ) ] ν 4 ( 1 − 2 ξ ) ( 1 − 2 σ 2 ) 3 + . − 4 γ 3 ξ 2 2 γ 6 ξ 4

Recommend


More recommend