optimization introduction optimization
play

Optimization (Introduction) Optimization Goal: Find the minimizer - PowerPoint PPT Presentation

Optimization (Introduction) Optimization Goal: Find the minimizer that minimizes the objective (cost) function : " Unconstrained Optimization Optimization Goal: Find the minimizer that minimizes the


  1. Optimization (Introduction)

  2. Optimization Goal: Find the minimizer π’š βˆ— that minimizes the objective (cost) function 𝑔 π’š : β„› " β†’ β„› Unconstrained Optimization

  3. Optimization Goal: Find the minimizer π’š βˆ— that minimizes the objective (cost) function 𝑔 π’š : β„› " β†’ β„› Constrained Optimization

  4. Unconstrained Optimization β€’ What if we are looking for a maximizer π’š βˆ— ? 𝑔 π’š βˆ— = max 𝑔 π’š π’š

  5. Calculus problem: maximize the rectangle area subject to perimeter constraint max 𝒆 ∈ β„› !

  6. 𝐡𝑠𝑓𝑏 = 𝑒 $ 𝑒 % 𝑒 % 𝑒 $ 𝑄𝑓𝑠𝑗𝑛𝑓𝑒𝑓𝑠 = 2(𝑒 $ + 𝑒 % ) 𝑒 % 𝑒 $

  7. Unconstrained Optimization 1D

  8. What is the optimal solution? (1D) 𝑔 𝑦 βˆ— = min 𝑔 𝑦 " (First-order) Necessary condition (Second-order) Sufficient condition

  9. Types of optimization problems 𝑔 𝑦 βˆ— = min 𝑔: nonlinear, continuous 𝑔 𝑦 and smooth " Gradient-free methods Evaluate 𝑔 𝑦 Gradient (first-derivative) methods Evaluate 𝑔 𝑦 , 𝑔′ 𝑦 Second-derivative methods Evaluate 𝑔 𝑦 , 𝑔′ 𝑦 , 𝑔′′ 𝑦

  10. Does the solution exists? Local or global solution?

  11. Example (1D) Consider the function 𝑔 π’š = 7 ! 8 βˆ’ 7 " 9 βˆ’ 11 𝑦 : + 40𝑦 . Find the stationary point and check the sufficient condition 100 - 6 - 4 - 2 2 4 6 - 100 - 200

  12. Optimization in 1D: Golden Section Search β€’ Similar idea of bisection method for root finding β€’ Needs to bracket the minimum inside an interval β€’ Required the function to be unimodal A function 𝑔: β„› β†’ β„› is unimodal on an interval [𝑏, 𝑐] ΓΌ There is a unique π’š βˆ— ∈ [𝑏, 𝑐] such that 𝑔(π’š βˆ— ) is the minimum in [𝑏, 𝑐] ΓΌ For any 𝑦 ; , 𝑦 : ∈ [𝑏, 𝑐] with 𝑦 ; < 𝑦 : 𝑦 : < π’š βˆ— ⟹ 𝑔(𝑦 ; ) > 𝑔(𝑦 : ) Β§ 𝑦 ; > π’š βˆ— ⟹ 𝑔(𝑦 ; ) < 𝑔(𝑦 : ) Β§

  13. 𝑔 𝑔 $ $ 𝑔 𝑔 & & 𝑔 ' 𝑔 𝑔 % % 𝑔 ' 𝑦 $ 𝑦 $ 𝑦 & 𝑦 & 𝑦 % 𝑦 ' 𝑦 % 𝑦 ' 𝑑 𝑑 𝑏 𝑏 𝑐 𝑐

  14. Golden Section Search

  15. Golden Section Search What happens with the length of the interval after one iteration? β„Ž ! = 𝜐 β„Ž " Or in general: β„Ž #$! = 𝜐 β„Ž # Hence the interval gets reduced by 𝝊 (for bisection method to solve nonlinear equations, 𝜐 =0.5) For recursion: 𝜐 β„Ž ! = (1 βˆ’ 𝜐) β„Ž " 𝜐 𝜐 β„Ž " = (1 βˆ’ 𝜐) β„Ž " 𝜐 % = (1 βˆ’ 𝜐) 𝝊 = 𝟏. πŸ•πŸπŸ—

  16. Golden Section Search β€’ Derivative free method! β€’ Slow convergence: |𝑓 ?B; | lim = 0.618 𝑠 = 1 (π‘šπ‘—π‘œπ‘“π‘π‘  π‘‘π‘π‘œπ‘€π‘“π‘ π‘•π‘“π‘œπ‘‘π‘“) 𝑓 ? ?β†’A β€’ Only one function evaluation per iteration

  17. Example

  18. Newton’s Method Using Taylor Expansion, we can approximate the function 𝑔 with a quadratic function about 𝑦 C 𝑔 𝑦 β‰ˆ 𝑔 𝑦 C + 𝑔 D 𝑦 C (𝑦 βˆ’ 𝑦 C ) + ; : 𝑔 D β€² 𝑦 C (𝑦 βˆ’ 𝑦 C ) : And we want to find the minimum of the quadratic function using the first-order necessary condition

  19. Newton’s Method β€’ Algorithm: 𝑦 0 = starting guess 𝑦 123 = 𝑦 1 βˆ’ 𝑔′ 𝑦 1 /𝑔′′ 𝑦 1 β€’ Convergence: β€’ Typical quadratic convergence β€’ Local convergence (start guess close to solution) β€’ May fail to converge, or converge to a maximum or point of inflection

  20. Newton’s Method (Graphical Representation)

  21. Example Consider the function 𝑔 𝑦 = 4 𝑦 9 + 2 𝑦 : + 5 𝑦 + 40 If we use the initial guess 𝑦 C = 2 , what would be the value of 𝑦 after one iteration of the Newton’s method?

Recommend


More recommend