on the multiplicative complexity of symmetric boolean
play

On the Multiplicative Complexity of Symmetric Boolean Functions Lus - PowerPoint PPT Presentation

On the Multiplicative Complexity of Symmetric Boolean Functions Lus Brando, ada alk, Meltem Snmez Turan, Ren Peralta National Institute of Standards and Technology (Gaithersburg, MD, USA) The 3 rd International Workshop on


  1. On the Multiplicative Complexity of Symmetric Boolean Functions Luís Brandão, Çağdaş Çalık, Meltem Sönmez Turan, René Peralta National Institute of Standards and Technology (Gaithersburg, MD, USA) The 3 rd International Workshop on Boolean Functions and their Applications (BFA) June 19, 2018 (Loen, Norway) Contact email: circuit_complexity@nist.gov . . . . . . . . . . . . . . . . . . . . 1/23 . . . . . . . . . . . . . . . . . . . .

  2. Outline 1. Introduction 2. Preliminaries 3. Twin method 4. Final remarks . . . . . . . . . . . . . . . . . . . . 2/23 . . . . . . . . . . . . . . . . . . . .

  3. 1. Introduction Outline 1. Introduction 2. Preliminaries 3. Twin method 4. Final remarks . . . . . . . . . . . . . . . . . . . . 3/23 . . . . . . . . . . . . . . . . . . . .

  4. 1. Introduction Boolean functions and circuits We focus on Boolean functions (i.e., predicates) � f : { 0 , 1 } n → { 0 , 1 } with n bits of input and 1 bit of output. � B n : set of ( 2 2 n ) Boolean functions with n input bits. . . . . . . . . . . . . . . . . . . . . 4/23 . . . . . . . . . . . . . . . . . . . .

  5. 1. Introduction Boolean functions and circuits We focus on Boolean functions (i.e., predicates) � f : { 0 , 1 } n → { 0 , 1 } with n bits of input and 1 bit of output. � B n : set of ( 2 2 n ) Boolean functions with n input bits. Boolean circuit: A combination of logic gates to compute functions. (A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.) x 1 x 2 x 3 Example gates (fanin 2) ∧ input output bits AND ( ∧ ) XOR ( ⊕ ) bits x 4 00 0 0 01 0 1 ∧ 10 0 1 11 1 0 . . . . . . . . . . . . . . . . . . . . 4/23 . . . . . . . . . . . . . . . . . . . .

  6. 1. Introduction Boolean functions and circuits We focus on Boolean functions (i.e., predicates) � f : { 0 , 1 } n → { 0 , 1 } with n bits of input and 1 bit of output. � B n : set of ( 2 2 n ) Boolean functions with n input bits. Boolean circuit: A combination of logic gates to compute functions. (A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.) x 1 x 2 x 3 Example gates (fanin 2) ∧ input output bits AND ( ∧ ) XOR ( ⊕ ) bits x 4 00 0 0 01 0 1 ∧ 10 0 1 11 1 0 � For nonlinear gates, we focus on AND gates with fanin 2. � For linear gates, we focus on XOR gates with arbitrary fanin. . . . . . . . . . . . . . . . . . . . . 4/23 . . . . . . . . . . . . . . . . . . . .

  7. 1. Introduction Multiplicative complexity (MC) c ∧ ( f ) : MC of a function f � min # nonlinear gates needed to implement f by a Boolean circuit . . . . . . . . . . . . . . . . . . . . 5/23 . . . . . . . . . . . . . . . . . . . .

  8. 1. Introduction Multiplicative complexity (MC) c ∧ ( f ) : MC of a function f � min # nonlinear gates needed to implement f by a Boolean circuit � equivalently*: min # AND ( ∧ ) gates over the basis ( ∧ , ⊕ , 1 ) * (since any fanin-2 nonlinear gate can be replaced by one AND gate and ⊕ ’s and 1’s) . . . . . . . . . . . . . . . . . . . . 5/23 . . . . . . . . . . . . . . . . . . . .

  9. 1. Introduction Multiplicative complexity (MC) c ∧ ( f ) : MC of a function f � min # nonlinear gates needed to implement f by a Boolean circuit � equivalently*: min # AND ( ∧ ) gates over the basis ( ∧ , ⊕ , 1 ) * (since any fanin-2 nonlinear gate can be replaced by one AND gate and ⊕ ’s and 1’s) Why useful to find circuits with minimal MC? � Shorter secure multi-party computation and zero-knowledge proofs: � non-linear gates are expensive; linear gates are “for free” � Resistance to side-channel attacks: � threshold protection of leakage from non-linear gates has high cost . . . . . . . . . . . . . . . . . . . . 5/23 . . . . . . . . . . . . . . . . . . . .

  10. 1. Introduction Multiplicative complexity (MC) c ∧ ( f ) : MC of a function f � min # nonlinear gates needed to implement f by a Boolean circuit � equivalently*: min # AND ( ∧ ) gates over the basis ( ∧ , ⊕ , 1 ) * (since any fanin-2 nonlinear gate can be replaced by one AND gate and ⊕ ’s and 1’s) Why useful to find circuits with minimal MC? � Shorter secure multi-party computation and zero-knowledge proofs: � non-linear gates are expensive; linear gates are “for free” � Resistance to side-channel attacks: � threshold protection of leakage from non-linear gates has high cost Notes: � Finding the MC of a Boolean function is hard � Almost all f ∈ B n have MC ≥ 2 n / 2 − n − 1 ; all ≤ 3 · 2 ( n − 1 ) / 2 − O n . . . . . . . . . . . . . . . . . . . . 5/23 . . . . . . . . . . . . . . . . . . . .

  11. 1. Introduction Symmetric Boolean functions S n : set of ( 2 n + 1 ) symmetric functions with n input bits � Output invariant when swapping any pair of input variables. � Output depends only on the Hamming weight (HW) of the input. . . . . . . . . . . . . . . . . . . . . 6/23 . . . . . . . . . . . . . . . . . . . .

  12. 1. Introduction Symmetric Boolean functions S n : set of ( 2 n + 1 ) symmetric functions with n input bits � Output invariant when swapping any pair of input variables. � Output depends only on the Hamming weight (HW) of the input. Examples of classes of symmetric n -bit functions: � Elementary symmetric ( Σ n k ): sum of all monomials of degree k (Note: Any f ∈ S n is a linear sum of Σ n i ’s) � Counting ( E n k ): 1 if and only if HW ( x ) = k � Threshold ( T n k ): 1 if and only if HW ( x ) ≥ k . . . . . . . . . . . . . . . . . . . . 6/23 . . . . . . . . . . . . . . . . . . . .

  13. 1. Introduction Symmetric Boolean functions S n : set of ( 2 n + 1 ) symmetric functions with n input bits � Output invariant when swapping any pair of input variables. � Output depends only on the Hamming weight (HW) of the input. Examples of classes of symmetric n -bit functions: � Elementary symmetric ( Σ n k ): sum of all monomials of degree k (Note: Any f ∈ S n is a linear sum of Σ n i ’s) � Counting ( E n k ): 1 if and only if HW ( x ) = k � Threshold ( T n k ): 1 if and only if HW ( x ) ≥ k Example function: Maj 3 — majority bit out of three (outputs 1 iff at least two 1s in input): T 3 2 = ( x 1 ∧ x 2 ) ⊕ ( x 1 ∧ x 3 ) ⊕ ( x 2 ∧ x 3 ) . . . . . . . . . . . . . . . . . . . . 6/23 . . . . . . . . . . . . . . . . . . . .

  14. 1. Introduction Symmetric Boolean functions S n : set of ( 2 n + 1 ) symmetric functions with n input bits � Output invariant when swapping any pair of input variables. � Output depends only on the Hamming weight (HW) of the input. Examples of classes of symmetric n -bit functions: � Elementary symmetric ( Σ n k ): sum of all monomials of degree k (Note: Any f ∈ S n is a linear sum of Σ n i ’s) � Counting ( E n k ): 1 if and only if HW ( x ) = k � Threshold ( T n k ): 1 if and only if HW ( x ) ≥ k Example function: Maj 3 — majority bit out of three (outputs 1 iff at least two 1s in input): T 3 2 = ( x 1 ∧ x 2 ) ⊕ ( x 1 ∧ x 3 ) ⊕ ( x 2 ∧ x 3 ) = (( x 1 ⊕ x 2 ) ∧ ( x 1 ⊕ x 3 )) ⊕ x 1 . . . . . . . . . . . . . . . . . . . . 6/23 . . . . . . . . . . . . . . . . . . . .

  15. 1. Introduction MC of symmetric functions Why care about the MC of functions in S n ? � Building blocks for other functions Improvements for S n may carry to non-symmetric functions. . . . . . . . . . . . . . . . . . . . . 7/23 . . . . . . . . . . . . . . . . . . . .

  16. 1. Introduction MC of symmetric functions Why care about the MC of functions in S n ? � Building blocks for other functions Improvements for S n may carry to non-symmetric functions. E.g.: sum of two n -bit integers, via n applications of Maj 3 . Three-to-one AND gate reduction leads to 2/3 communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum). . . . . . . . . . . . . . . . . . . . . 7/23 . . . . . . . . . . . . . . . . . . . .

  17. 1. Introduction MC of symmetric functions Why care about the MC of functions in S n ? � Building blocks for other functions Improvements for S n may carry to non-symmetric functions. E.g.: sum of two n -bit integers, via n applications of Maj 3 . Three-to-one AND gate reduction leads to 2/3 communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum). � Easier start-point for certain MC analyses? . . . . . . . . . . . . . . . . . . . . 7/23 . . . . . . . . . . . . . . . . . . . .

Recommend


More recommend