on the computation of approximate slow invariant manifolds
play

On the Computation of Approximate Slow Invariant Manifolds Samuel - PowerPoint PPT Presentation

On the Computation of Approximate Slow Invariant Manifolds Samuel Paolucci, Joseph M. Powers, and Ashraf N. Al-Khateeb Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana International Workshop of


  1. On the Computation of Approximate Slow Invariant Manifolds Samuel Paolucci, Joseph M. Powers, and Ashraf N. Al-Khateeb Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana International Workshop of Model Reduction in Reacting Flow Rome 4 September 2007 support: National Science Foundation, ND Center for Applied Mathematics

  2. Major Issues in Reduced Modeling of Reactive Flows • How to construct a Slow Invariant Manifold (SIM)? • SIM for ODEs is different than SIM for PDEs. • How to construct a SIM for PDEs?

  3. Partial Review of Manifold Methods in Reactive Systems • Davis and Skodje, JCP , 1999: demonstration that (Intrinsic Low Dimensional Manifold) ILDM is not SIM in simple non-linear ODEs, finds SIM in simple ODEs, • Singh, Powers, and Paolucci, JCP , 2002: use ILDM to construct Approximate SIM (ASIM) in simple and detailed PDEs, • Ren and Pope, C&F , 2006: show conditions for chemical manifold to approximate reaction-diffusion system, • Davis, JPC , 2006: systematic development of manifolds for reaction-diffusion, • Lam, CST , 2007: considers CSP for reaction-diffusion coupling.

  4. Motivation • Severe stiffness in reactive flow systems with detailed gas phase chemical kinetics renders fully resolved simulations of many systems to be impractical. • ILDM method can reduce computational time while retaining essential fidelity of full detailed kinetics. • The ILDM is only an approximation of the SIM. • Using ILDM in systems with diffusion can lead to large errors at boundaries and when diffusion time scales are comparable to those of reactions. • An Approximate Slow Invariant Manifold (ASIM) is developed for systems where reactions couple with diffusion.

  5. Chemical Kinetics Modeled as a Dynamical System • ILDM developed for spatially homogeneous premixed reactor: d y y ∈ R n , dt = f ( y ) , y (0) = y 0 , y = ( h, p, Y 1 , Y 2 , ..., Y n − 2 ) T . Solution Trajectory Fast Y 3 Solution 1-D Manifold Trajectory Slow Y 2 2-D Manifold Equilibrium Point (0-D Manifold) Y 1

  6. Eigenvalues and Eigenvectors from Decomposition of Jacobian f y = J = VΛ ˜ ˜ V = V − 1 , V , � � V = , V s V f   0  Λ ( s )  . Λ = 0 Λ ( f ) • The time scales associated with the dynamical system are the reciprocal of the eigenvalues: 1 τ i = | λ ( i ) | .

  7. Mathematical Model for ILDM • With z = ˜ Vy and g = f − f y y � � n 1 dz i d v j = z i + ˜ v i g � dt + ˜ dt z j , i = 1 , . . . , n, v i λ ( i ) λ ( i ) j =1 • By equilibrating the fast dynamics z i + ˜ v i g ⇒ ˜ = 0 , i = m + 1 , . . . , n. V f f = 0 . λ ( i ) � �� � ILDM � �� � ILDM • Slow dynamics approximated from differential algebraic equa- tions on the ILDM d y ˜ dt = ˜ 0 = ˜ V s f , V f f . V s

  8. SIM vs. ILDM • An invariant manifold is defined as a subspace S ⊂ R n if for any solution y ( t ) , y (0) ∈ S , implies that for some T > 0 , y ( t ) ∈ S for all t ∈ [0 , T ] . • Slow Invariant Manifold (SIM) is a trajectory in phase space, and the vector f must be tangent to it. • ILDM is an approximation of the SIM and is not a phase space trajectory. • ILDM approximation gives rise to an intrinsic error which de- creases as stiffness increases.

  9. Comparison of the SIM with the ILDM • Example from Davis and Skodje, J. Chem. Phys. , 1999: � � � � y 1 − y 1 d y dt = d = = f ( y ) , − γy 2 + ( γ − 1) y 1 + γy 2 dt y 2 1 (1+ y 1 ) 2 • The ILDM for this system is given by 2 y 2 y 1 ˜ 1 V f f = 0 , ⇒ y 2 = + γ ( γ − 1)(1 + y 1 ) 3 , 1 + y 1 • while the SIM is given by y 1 y 2 = y 1 (1 − y 1 + y 2 1 − y 3 1 + y 4 1 + . . . ) = . 1 + y 1

  10. Construction of the SIM via Trajectories • An exact SIM can be found by identifying all critical points and connecting them with trajectories (Davis, Skodie, 1999; Creta, et al. 2006). • Useful for ODEs. • Equilibrium points at infinity must be considered. • Not all invariant manifolds are attracting.

  11. Zel’dovich Mechanism for NO Production N + NO ⇋ N 2 + O N + O 2 ⇋ NO + O • spatially homogeneous, • isothermal and isobaric, T = 6000 K , P = 2 . 5 bar , • law of mass action with reversible Arrhenius kinetics, • kinetic data from Baulch, et al. , 2005, • thermodynamic data from Sonntag, et al. , 2003.

  12. Zel’dovich Mechanism: ODEs d [ NO ] = r 2 − r 1 = ˙ ω [ NO ] , [ NO ]( t = 0) = [ NO ] o , dt d [ N ] = − r 1 − r 2 = ˙ ω [ N ] , [ N ]( t = 0) = [ N ] o , dt d [ N 2 ] = r 1 = ˙ ω [ N 2 ] , [ N 2 ]( t = 0) = [ N 2 ] o , dt d [ O ] = r 1 + r 2 = ˙ ω [ O ] , [ O ]( t = 0) = [ O ] o , dt d [ O 2 ] = − r 2 = ˙ ω [ O 2 ] , [ O 2 ]( t = 0) = [ O 2 ] o , dt � � � − ∆ G o � 1 [ N 2 ][ O ] 1 r 1 = k 1 [ N ][ NO ] 1 − , K eq 1 = exp K eq 1 [ N ][ NO ] ℜ T � � � − ∆ G o � 1 [ NO ][ O ] 2 r 2 = k 2 [ N ][ O 2 ] 1 − , K eq 2 = exp . K eq 2 [ N ][ O 2 ] ℜ T

  13. Zel’dovich Mechanism: DAEs d [ NO ] = ω [ NO ] , ˙ dt d [ N ] = ω [ N ] , ˙ dt [ NO ] + [ O ] + 2[ O 2 ] = [ NO ] o + [ O ] o + 2[ O 2 ] o ≡ C 1 , [ NO ] + [ N ] + 2[ N 2 ] = [ NO ] o + [ N ] o + 2[ N 2 ] o ≡ C 2 , [ NO ] + [ N ] + [ N 2 ] + [ O 2 ] + [ O ] = [ NO ] o + [ N ] o + [ N 2 ] o + [ O 2 ] o + [ O ] o ≡ C 3 . Constraints for element and molecule conservation.

  14. Classical Dynamic Systems Form d [ NO ] ˆ ω [ NO ] = 0 . 72 − 9 . 4 × 10 5 [ NO ] + 2 . 2 × 10 7 [ N ] = ˙ dt − 3 . 2 × 10 13 [ N ][ NO ] + 1 . 1 × 10 13 [ N ] 2 , d [ N ] ˆ ω [ N ] = 0 . 72 + 5 . 8 × 10 5 [ NO ] − 2 . 3 × 10 7 [ N ] = ˙ dt − 1 . 0 × 10 13 [ N ][ NO ] − 1 . 1 × 10 13 [ N ] 2 . Constants evaluated for T = 6000 K , P = 2 . 5 bar , C 1 = C 2 = 4 × 10 − 6 mole/cc , ∆ G o 1 = − 2 . 3 × 10 12 erg/mole , ∆ G o 2 = − 2 . 0 × 10 12 erg/mole . Algebraic constraints absorbed into ODEs.

  15. Species Evolution in Time concentration (mole/cc) -6 1 x 10 [NO] -7 5 x 10 -7 2 x 10 -7 1 x 10 [N] t (s) -7 -10 -9 -8 -6 10 10 10 10 10

  16. Dynamical Systems Approach to Construct SIM Finite equilibria and linear stability: ( − 1 . 6 × 10 − 6 , − 3 . 1 × 10 − 8 ) , 1 . ([ NO ] , [ N ]) = (5 . 4 × 10 6 , − 1 . 2 × 10 7 ) ( λ 1 , λ 2 ) = saddle (unstable) ( − 5 . 2 × 10 − 8 , − 2 . 0 × 10 − 6 ) , 2 . ([ NO ] , [ N ]) = (4 . 4 × 10 7 ± 8 . 0 × 10 6 i ) ( λ 1 , λ 2 ) = spiral source (unstable) (7 . 3 × 10 − 7 , 3 . 7 × 10 − 8 ) , 3 . ([ NO ] , [ N ]) = ( − 2 . 1 × 10 6 , − 3 . 1 × 10 7 ) ( λ 1 , λ 2 ) = sink (stable, physical) stiffness ratio = λ 2 /λ 1 = 14 . 7 Equilibria at infinity and non-linear stability 1 . ([ NO ] , [ N ]) → (+ ∞ , 0) sink/saddle (unstable) , 2 . ([ NO ] , [ N ]) → ( −∞ , 0) source (unstable) .

  17. Detailed Phase Space Map with All Finite Equilibria -7 x 10 5 sink 3 sadd le SIM 0 1 SIM [N] (mole/cc) -5 -10 -15 spira l source -20 2 -4 -3 -2 -1 0 1 2 -6 x 10 [NO] (mole/cc)

  18. Projected Phase Space from Poincar´ e’s Sphere [N] ______________ ____________ ___ 2 2 1+[N] + [NO] _ sink SIM SIM saddle [NO] ______________ ____________ ___ 2 2 1+[N] + [NO] _ spiral sourc e

  19. ASIM for Reaction-Diffusion PDEs • Slow dynamics can be approximated by the ASIM ∂ y ∂ h ˜ V s f − ˜ ˜ = ∂x, V s V s ∂t ∂ h V f f − ˜ ˜ = ∂x. 0 V f • Spatially discretize to form differential-algebraic equations (DAEs): d y i h i +1 − h i − 1 ˜ V si f i − ˜ ˜ = , V si V si dt 2∆ x h i +1 − h i − 1 V f i f i − ˜ ˜ = . 0 V f i 2∆ x • Solve numerically with DASSL • ˜ V s , ˜ V f computed in situ ; easily fixed for a priori computation

  20. Davis-Skodje Example Extended to Reaction-Diffusion ∂ y ∂t = f ( y ) − D ∂ h ∂x • Boundary conditions are chosen on the SIM � � 1 y ( t, 0) = 0 , y ( t, 1) = . 1 1 2 + 4 γ ( γ − 1) • Initial conditions   x  . y (0 , x ) = � �  1 1 2 + x 4 γ ( γ − 1)

  21. Davis-Skodje Reaction-Diffusion Results 0.5 0.5 D = 10 − 1 D = 10 − 3 0.4 0.4 0.3 0.3 Full PDE Full PDE y 2 y 2 ASIM ASIM 0.2 0.2 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y 1 y 1 • Solution at t = 5 , for γ = 10 with varying D . • PDE solutions are fully resolved.

  22. Reaction Diffusion Example Results • The global error when using ASIM is small in general, and is similar to that incurred by the full PDE near steady state. −1 10 −2 10 ASIM −3 L ∞ 10 −4 10 Full PDE −5 10 −2 −1 0 1 10 10 10 10 t

  23. NO Production Reaction-Diffusion System • Isothermal and isobaric, T = 3500 K, P = 1 . 5 bar , with Neumann boundary conditions,and initial distribution: −6 2.5 x 10 N 2 N NO O O 2 2 [mole/cm 3 ] 1.5 1 ρ i ¯ 0.5 0 0 0.2 0.4 0.6 0.8 1 x ( cm )

  24. NO Production Reaction Diffusion System • At t = 10 − 6 s . −7 6.2 x 10 ASIM 6.15 Full PDE 6.1 6.05 6 [O 2 ] 5.95 5.9 5.85 5.8 5.75 1.72 1.73 1.74 1.75 1.76 1.77 1.78 −6 [N 2 ] x 10

Recommend


More recommend