slow invariant manifolds in chemically reactive systems
play

Slow Invariant Manifolds in Chemically Reactive Systems Samuel - PowerPoint PPT Presentation

Slow Invariant Manifolds in Chemically Reactive Systems Samuel Paolucci (paolucci@nd.edu) Joseph M. Powers (powers@nd.edu) University of Notre Dame Notre Dame, Indiana 59th Annual Meeting of the APS DFD Tampa Bay, Florida 21 November 2006


  1. Slow Invariant Manifolds in Chemically Reactive Systems Samuel Paolucci (paolucci@nd.edu) Joseph M. Powers (powers@nd.edu) University of Notre Dame Notre Dame, Indiana 59th Annual Meeting of the APS DFD Tampa Bay, Florida 21 November 2006

  2. Motivation • Manifold methods offer a rational strategy for reducing stiff sys- tems of detailed chemical kinetics. • Manifold methods are suited for spatially homogeneous systems (ODEs), or operator split (PDEs) reactive flows. • Approximate methods (ILDM, CSP) cannot be used reliably for arbitrary initial conditions. • Calculation of the actual Slow Invariant Manifold (SIM) can be algorithmically easier and computationally more efficient. • Global phase maps identify information essential to proper use of manifold methods.

  3. Zel’dovich Mechanism for NO Production N + NO ⇀ ↽ N 2 + O N + O 2 ⇀ ↽ NO + O • spatially homogeneous, • isothermal and isobaric, T = 6000 K , P = 2 . 5 bar , • law of mass action with reversible Arrhenius kinetics.

  4. Classical Dynamic Systems Form d [ NO ] ω [ NO ] = 0 . 72 − 9 . 4 × 10 5 [ NO ] + 2 . 2 × 10 7 [ N ] � = ˙ dt − 3 . 2 × 10 13 [ N ][ NO ] + 1 . 1 × 10 13 [ N ] 2 , d [ N ] ω [ N ] = 0 . 72 + 5 . 8 × 10 5 [ NO ] − 2 . 3 × 10 7 [ N ] � = ˙ dt − 1 . 0 × 10 13 [ N ][ NO ] − 1 . 1 × 10 13 [ N ] 2 . Algebraic constraints from element conservation absorbed into ODEs.

  5. Dynamical Systems Approach to Construct SIM Finite equilibria and linear stability: ( − 1 . 6 × 10 − 6 , − 3 . 1 × 10 − 8 ) , 1 . ([ NO ] , [ N ]) = (5 . 4 × 10 6 , − 1 . 2 × 10 7 ) ( λ 1 , λ 2 ) = saddle (unstable) ( − 5 . 2 × 10 − 8 , − 2 . 0 × 10 − 6 ) , 2 . ([ NO ] , [ N ]) = (4 . 4 × 10 7 ± 8 . 0 × 10 6 i ) ( λ 1 , λ 2 ) = spiral source (unstable) (7 . 3 × 10 − 7 , 3 . 7 × 10 − 8 ) , 3 . ([ NO ] , [ N ]) = ( − 2 . 1 × 10 6 , − 3 . 1 × 10 7 ) ( λ 1 , λ 2 ) = sink (stable, physical) stiffness ratio = λ 2 /λ 1 = 14 . 7 Equilibria at infinity and non-linear stability 1 . ([ NO ] , [ N ]) → (+ ∞ , 0) sink/saddle (unstable) , 2 . ([ NO ] , [ N ]) → ( −∞ , 0) source (unstable) .

  6. Detailed Phase Space Map with All Finite Equilibria -7 x 10 5 sink 3 sadd le SIM 0 1 SIM [N] (mole/cc) -5 -10 -15 spira l source -20 2 -4 -3 -2 -1 0 1 2 -6 x 10 [NO] (mole/cc)

  7. Projected Phase Space from Poincar´ e’s Sphere [N] ______________ ____________ ___ 2 2 1+[N] + [NO] _ sink SIM SIM saddle [NO] ______________ ____________ ___ 2 2 1+[N] + [NO] _ spiral sourc e

  8. Connections of SIM with Thermodynamics • Classical thermodynamics identifies equilibrium with the mini- mum of Gibbs free energy. • Far from equilibrium, the Gibbs free energy potential appears to have no value in elucidating the dynamics. • Non-equilibrium thermodynamics contends (Prigogine?, , , ) that far-from-equilibrium systems relax to minimize the irre- versibility production rate. • We demonstrate that this is not true for the [ NO ] − [ N ] mechanism, and thus is not true in general. • This is consistent with M¨ uller’s 2005 result for heat conduction.

  9. Physical Dissipation: Irreversibility Production Rate d I __ (erg/cc/K/s) dt 7.5 ·10 7 5·10 7 5·10 -8 2.5 ·10 7 0 4·10 -8 4·10 -7 0 -7 [N] (mole/cc) 6·10 -7 6·10 -7 3·10 -8 8·10 -7 8·10 -7 [NO] (mole/cc) 1·10 -6 1·10 -6 2·10 -8 d I dt = − 1 � ω · ∇ G ≥ 0 . ˙ T The physical dissipation rate is everywhere positive semi-definite.

  10. Gibbs Free Energy Gradient Magnitude ∆ | G| (erg cc / mole) 3·10 11 8·10 -7 1·10 11 7.5 ·10 -7 0 2·10 -8 0 -8 [NO] (mole / cc) 3·10 -8 3·10 -8 7·10 -7 4·10 -8 4·10 -8 [N] (mole / cc) 5·10 -8 5·10 -8 ! N − L X ∂ b ∂ 2 G ∂ d I dt = − 1 ω k ˙ ∂G + b ω k ˙ , ξ 1 = [ NO ] , ξ 2 = [ N ] . ∂ξ p T ∂ξ p ∂ξ k ∂ξ p ∂ξ k k =1

  11. Irreversibility Production Rate Gradient Magnitude ∆ | dI / dt | (erg cc / K / s / mole) 4·10 15 8·10 -7 2·10 15 7.5 ·10 -7 0 2·10 -8 0 -8 [NO] (mole/cc) 3·10 -8 3·10 -8 7·10 -7 4·10 -8 4·10 -8 [N] (mole/cc) 5·10 -8 5·10 -8 |∇ d I /dt | “valley” coincident with |∇ G | .

  12. SIM vs. Irreversibility Minimization vs. ILDM [N] (mole/cc) 6·10 -8 stable sink (3) 4·10 -8 SIM and ILDM locus of minimum 2·10 -8 irreversibility production SIM rate gradient [NO] (mole/cc) -1.5 ·10 -6 -1 ·10 -6 -5 ·10 -7 5·10 -7 1·10 -6 1.5 ·10 -6 -2 ·10 -8 unstable saddle (1) Lebiedz, 2004, uses this in a variational method.

  13. Conclusions • Global phase maps are useful in constructing the SIM. • Global phase maps give guidance in how to project onto the SIM. • Global phase maps shows when manifold-based reductions should not be used. • The SIM does not coincide with either the local minima of irreversibility production rates or Gibbs free energy, except near physical equilbrium. • While such potentials are valuable near equilibrium, they offer no guidance for non-equilibriium kinetics.

Recommend


More recommend