a topological method for the detection of normally
play

A topological method for the detection of normally hyperbolic - PowerPoint PPT Presentation

A topological method for the detection of normally hyperbolic invariant manifolds Maciej Capi nski AGH University of Science and Technology, Krak ow Joint work with Piotr Zgliczy nski Jagiellonian University, Krak ow S.I.M.S.


  1. A topological method for the detection of normally hyperbolic invariant manifolds Maciej Capi´ nski AGH University of Science and Technology, Krak´ ow Joint work with Piotr Zgliczy´ nski Jagiellonian University, Krak´ ow S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 1 / 18

  2. Plan of the presentation Statement of the problem Normally hyperbolic invariant manifold theorem Covering relations and cone conditions Existence of the normally hyperbolic invariant manifold Foliation of W u and W s Verification of conditions Example S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 2 / 18

  3. Statement of the problem f : Λ × B u × B s → Λ × R u × R s ( Λ = S 1 ) Λ is compact manifold without a boundary y ? ? x Do we have an invariant manifold in Λ × B u × B s ? S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 3 / 18

  4. Normally hyperbolic invariant manifold theorem D = D = y y x x f : D → Λ × R 2 f ε = f + ε g we start with the region D and devise conditions which ensure the existence of the manifold the conditions are verifiable with rigorous numerics S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 4 / 18

  5. Normally hyperbolic invariant manifold theorem D = D = y y x x f : D → Λ × R 2 we start with the region D and devise conditions which ensure the existence of the manifold the conditions are verifiable with rigorous numerics S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 4 / 18

  6. Local maps Topological conditions (covering relations) D = f } } f y k i x x { V j } and { U i } are coverings of Λ � ⊂ U k × R u × R s � V j × B u × B s f k i S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 5 / 18

  7. Cones y f k i x x In local coordinates we define Q ( θ , x , y ) = � x � 2 − � y � 2 − � θ � 2 Horizontal cone Q ≥ 0: For each point q ∈ D we have local coordinates which contain cones starting from q . Q = a and Q = b for 0 < a < b : y q x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 6 / 18

  8. Cone conditions y f k i x x m > 1. If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Horizontal cone Q ≥ 0: For each point q ∈ D we have local coordinates which contain cones starting from q . Q = a and Q = b for 0 < a < b : y q x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 7 / 18

  9. Horizontal discs y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) A horizontal disc: A horizontal disc which b : B u → V j × B u × B s satisfies cone conditions: y y x x Lemma An image of a horizontal disc which satisfies cone conditions is a horizontal disc which satisfies cone conditions. S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 8 / 18

  10. Horizontal discs y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Lemma An image of a horizontal disc which satisfies cone conditions is a horizontal disc which satisfies cone conditions. Proof. f k i y y x 0 x x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 9 / 18

  11. Horizontal discs y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Lemma An image of a horizontal disc which satisfies cone conditions is a horizontal disc which satisfies cone conditions. Proof. f k i y y x 0 x x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 9 / 18

  12. Horizontal discs y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Lemma An image of a horizontal disc which satisfies cone conditions is a horizontal disc which satisfies cone conditions. Proof. f k i y y x x � S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 9 / 18

  13. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. y . . . 0 x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  14. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. y . . . 0 x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  15. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. ?! y . . . 0 x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  16. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. y 0 x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  17. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. y 0 x S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  18. Forward iterations y f k i x x If Q ( x 1 − x 2 ) ≥ 0 Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) then Lemma For any θ 0 ∈ Λ we have a vertical disc of points in { θ 0 } × B u × B s which stay inside of Λ × B u × B s . Proof. y 0 x � S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 10 / 18

  19. Main Result y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Theorem If f and f − 1 satisfy the the topological and cone conditions then there exists a C 0 map χ : Λ → Λ × B u × B s such that χ ( Λ ) = inv ( f , Λ × B u × B s ) and C 0 stable and unstable manifolds W s , W u . Proof a vertical disc of forward invariant points: y x 0 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 11 / 18

  20. Main Result y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Theorem If f and f − 1 satisfy the the topological and cone conditions then there exists a C 0 map χ : Λ → Λ × B u × B s such that χ ( Λ ) = inv ( f , Λ × B u × B s ) and C 0 stable and unstable manifolds W s , W u . Proof a horizontal disc of backward invariant points: y x 0 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 11 / 18

  21. Main Result y f k i x x If Q ( x 1 − x 2 ) ≥ 0 then Q ( f ki ( x 1 ) − f ki ( x 2 )) > mQ ( x 1 − x 2 ) Theorem If f and f − 1 satisfy the the topological and cone conditions then there exists a C 0 map χ : Λ → Λ × B u × B s such that χ ( Λ ) = inv ( f , Λ × B u × B s ) and C 0 stable and unstable manifolds W s , W u . Proof gives χ ( θ 0 ) : = q y q � x 0 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 11 / 18

  22. Foliation of W s A very simple example y y ′ = − 2 y θ ′ = − θ y ( t ) = y 0 e − 2 t θ ( t ) = θ 0 e − t Vertical cone: V ≥ 0 V ( θ , x , y ) = −� θ � 2 − � x � 2 + � y � 2 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 12 / 18

  23. Foliation of W s A very simple example y ′ = − 2 y θ ′ = − θ y ( t ) = y 0 e − 2 t θ ( t ) = θ 0 e − t Vertical cone: V ≥ 0 V ( θ , x , y ) = −� θ � 2 − � x � 2 + � y � 2 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 12 / 18

  24. Foliation of W s y Foliation conditions 0 < β < λ , q 1 � = q 2 1 If V ( q 1 − q 2 ) ≥ 0 then � π y ( f ( q 1 ) − f ( q 2 )) � < β � π y ( q 1 − q 2 ) � 2 If V ( q 1 − q 2 ) < 0 then V ( f ( q 1 ) − f ( q 2 )) < λ 2 V ( q 1 − q 2 ) V ( θ , x , y ) = −� θ � 2 − � x � 2 + � y � 2 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 13 / 18

  25. Foliation of W s y Foliation conditions V ≥ 0, V = c < 0, V = λ 2 c 0 < β < λ , q 1 � = q 2 1 If V ( q 1 − q 2 ) ≥ 0 then � π y ( f ( q 1 ) − f ( q 2 )) � < β � π y ( q 1 − q 2 ) � 2 If V ( q 1 − q 2 ) < 0 then V ( f ( q 1 ) − f ( q 2 )) < λ 2 V ( q 1 − q 2 ) V ( θ , x , y ) = −� θ � 2 − � x � 2 + � y � 2 S.I.M.S. Workshop Normally Hyperbolic Manifolds Barcelona, 1 Dec. 2008 13 / 18

Recommend


More recommend